

Max Planck Institute for Polymer Research NMR lecture Manfred Wagner

4

- k_B = Boltzmann constant = 1,3805 10⁻²³JK⁻¹
- **T** = absolute temperature in K
- h = h/2π = 6,6256 10⁻³⁴Js
- **B**₀ = magnetic flux density in Tesla
- γ = magnetogyric relation (for ¹H) = 26,7522 10⁷ rad T⁻¹s⁻¹

One example to calculate the sensitivity

m = *l*, *l*-1, *l*-2, ..., -*l* => 2*l*+1 possibilities

1 million

1 million

Low energy level

How does it looks like (90° pulse or 180° pulse)? For 50 MHz ¹H

l = 1/2

m = -1/2

Chemical shift and references	nuclei	γ, in 10 ⁷ rad s ⁻¹ *T ⁻¹	Resoncance frequency at 11,7T	Natural abundance (na)
$^{1}\mathrm{H}$ with 1% TMS (tetramethylsilane) in CDCI_{3} = 0 ppm -in water, TMSP instead of TMS	1H	+26.7513	500 MHz	99,98 %
⁷ Li with 1 mol LiCl in $D_2O = 0$ ppm	² H = D	+4.1065	76 MHz	0,02 %
¹¹ B with 15% BF_3 .Et ₂ O in CDCl ₃ at = 0 ppm	⁷ Li	+10.3962	194 MHz	92 %
¹³ C with 1% TMS (tetramethylsilane) in $\text{CDCl}_3 = 0$ ppm	¹¹ B	+8.5847	160 MHz	80 %
¹⁵ N with MeNO ₂ + 10% CDCl ₃ = 0 ppm	¹³ C	+6.7262	125 MHz	1,07
¹⁷ O with $D_2O = 0$ ppm	¹⁵ N	-2.7116	51 MHz	0.37 %
¹⁹ F with CCl₂F or fluorobenzene	¹⁷ O	-3.6264	68 MHz	0.038 %
27 Al with 1.1 m Al(NO) in D O = 0 ppm	¹⁹ F	+25.1662	470 MHz	100 %
A with 1.1 m Al($NO_{3/3}$ m $D_2O = 0$ ppm	²⁷ AI	+6.9763	130 MHz	100 %
²⁹ Si with 1% TMS (tetramethylsilane) in $CDCl_3 = 0$ ppm	²⁹ Si	-5.3190	99 MHz	4.7 %
³¹ P with H_3PO_4 external = 0 ppm	³¹ P	+10.8291	202 MHz	100 %
$^{117}\mathbf{Sn}$, 1 $^{19}\mathbf{Sn}$ with $\mathrm{Me_4Sn}$ + 5% $\mathrm{C_6D_6}$ = 0 ppm	¹¹⁷ Sn	-9.5888	178 MHz	7.7 %
⁴¹ K, ⁷¹ Ga, ⁸⁵ Rb, ¹⁰¹ Ru, ¹³³ Cs, ²⁰⁷ Pb and many others	¹¹⁹ Sn	-10.0317	187 MHz	8.6 %

NMR nuclei available in our house

¹H, ²H, ⁶Li, ⁷Li, ¹⁰B, ¹¹B, ¹³C, ¹⁴N, ¹⁵N, ¹⁷O, ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P,³⁹K, ⁴³Ca,

⁴⁹Ti,.....¹¹⁹Sn,.....¹³³Cs.....¹⁹⁵Pt....²⁰⁵TI..

• Chemical shift (specific information about structure)

- Indirect Coupling constant (coupled nuclei over electron bonds in the neighborhood, inside a certain distance, between one and five bonds) → through bond
- o Integration (complete amount inside a tube),
- Dipole coupling (NOE) \rightarrow through space,
- Relaxation time (broadening of signals (T_2) , spin-lattice relaxation (T_1)), related to dynamic behavior,

o Diffusion in solution (filtered NMR),

one example ¹H NMR of organic molecules with charges

a. Chemical shift

 \circ $\,$ Nuclei are surrounded with electrons

the local magnetic field at the nucleus is not the same as the external magnetic field

• Consider a CH bond: electron density in TMS is bigger than in chloroform

stronger electron density diminishes the external field, external magnetic field is shielded

- \circ Energy absorption takes place at effective magnetic field ${\rm B}_{\rm eff}$ which is acting at the nucleus
- Different concentration different absorption
- Solvent environment change the B_{eff}

a. Chemical shift

definition of the ppm versus Hz scale:

δ is independent of the magnetic field

$$\delta = \frac{v_{Probe} - v_{Ref}}{v_{Ref}}$$

Hz scale magnetic field dependent

Example

<u>1 ppm</u> at 500 MHz (11,7 T) ¹H NMR = 500 MHz

<u>1 ppm</u> at 1000 MHz (23,4 T) ¹H NMR = 1000 MHz

a. Chemical shift electron density Methyl-Aldehyd-Proton -Amid-N-H -N-Methyl ¹H-NMR down-field up-field less electron density more electron density nuclei are deshielded from B₀ nuclei are shielded from B₀

17

a. Chemical shift ¹³C-NMR \mathbf{F} C1Br Ι 4 3 HBr₃ HI₃ 2 1 · down-field **CH**₄ up-field 0 [ppm] 100 50 -150 -50 -100 -200 -250 -300 0 less electron density more electron density nuclei are deshielded from B₀ nuclei are shielded from B₀

B-Field dependence of coupling J and chemical shift δ

example chemical shift versus Hz

20

21

a. Chemical shift

Keyword magnetic anisotropy

- H-nucleus has two orientations to the external magnetic field (parallel and anti parallel)
- $I = \frac{1}{2} = 1$ two additional fields can be observed at H⁴ und H⁴
- Considering all nuclei in the sample: some of them are parallel and some anti parallel
- As a consequence: two lines of H' will be observed
- Both lines are caused by the same nucleus H
- They will be called "doublet"

Spin-systems: b. **Indirect coupling** Ha соон A_2X_2 H₃CO AX CH2 `CH₃ H₃CO² ĊH₃ Hx Hb Br AB На Ha CH3 CI. CI A_2B_2 ĊH, Br Hb Hb AX_2 Hb Hb NO₂ H₃C[™] CH3 Ha' На ŃΗ₂ AB_2 **AA'XX'** Hb Hx' Нх H₃C′ CH3 ÓCH₃ AMX Ha Hx Hm Hb **C** AA'BB' HOOC Ha Hb' ABX Cl Ha'

nuclear spin I = 1/2

nuclear spin I = 1

Responsible for the indirect spin-spin coupling is the contact-term:

direct interaction of nuclear magnetic moments and the binding electrons in the s-orbitals

(the electron in the 1s orbital has a infinite probability of presence in the die nucleus place)

it's understandable, why the coupling constants are strongly depending on:

- o the hybridization
- valence and torsion angle
- lengths of the bonds
- \circ π -bindings in the neighborhood
- o effects of the bonded atoms in the neighborhood
- o and many other effects

Keywords: Pauli-principles, binding electrons anti parallel and the moment of the nucleus anti parallel to the binding electrons

¹ J _{CH} -areas (Hz)
120-135
135-155
155-170
240-250
155-170
170-190

Karplus Relation (1959)

c. Integration

¹H NMR quantitative measurements

Integration Width of integrals Lorentz-peaks

Integration width / Half width of the signal units are the half width of the signals	Percentage of the real signal intensity [%]
1,00	50,00
2,00	70,48
3,00	79,52
5,00	87,43
6,31	90,00
10,00	93,65
12,71	95,00
20,00	97,00
63,60	99,00
636,00	99,90
6366,00	99,99

C.

Factor = Integration width/Half width of the signal = 156/1,5 = 104

c. Integration

99,1 % of the signal is inside the integral! Compared signals has the same factor!! In this case 104!!

2D "HOMO" NMR Experiment:

• Introduction and theory

2D Acronyms, what does that mean

• Example from our house

Introduction and theory

• Correlation of nuclei from one species (e.g. ¹H)

• Via bond correlation

• Via space correlation (mainly dipole-dipole)

Introduction and theory

Acronyms

COSY (Correlation SpectroscopY)

TOCSY (TOtal Correlation SpectroscopY)

NOESY (Nuclear Overhauser Effect SpectroscopY)

ROESY (Rotating Frame Overhauser Effect SpectroscopY)

INADEQUATE (Incredible Natural Abundance Double QUAntum Tranfer Experiment)

Have in mind that the first 4 Experiments exist also with solvent suppression

diagonal peaks representing the chemical shifts of the protons

COSY - COrrelation SpectroscopY

cross peaks representing the chemical shifts of the protons

2D H,H-NOESY

NOESY - Nuclear Overhauser Enhanced SpectroscopY

isotropic rotational correlation time: $\Rightarrow \tau_c = 4\pi \eta_W r^3 H (3k_BT)$

NOESY - Nuclear Overhauser Enhanced SpectroscopY

protons close in space (<5 Å) or in chemical exchange

Dye compound from AK Müllen

two isomers

Compound in Phd work from S. Stappert (currently)

2D ¹⁹F COSY 2D correlation

also possible with ³¹P

Ph. D work D. Türp measured 470 MHz

2D C,C-INADEQUATE (Incredible Natural Abundance Double QUAntum Tranfer Experiment)

> 2D "HETERO" Experiments

Introduction and theory (Acronyms?)

Introduction and theory

Correlation of nuclei from different species

via bond correlation

via space correlation (mainly dipole-dipole)

Acronyms

HSQC (Hetero-Single-Quant-Correlation)

HMQC (Hetero-Multiple-Quant-Correlation)

HMBC (Hetero-Multiple-Bond-Correlation)

Dye compound from AK Müllen

two isomers

Compound in Phd work from S. Stappert (currently synthesized)

2D ¹H,¹³C HSQC

¹J: C-H (125 -145Hz)

$2D \,{}^{1}H, {}^{13}C \,HSQC \qquad 2D \,{}^{1}H, {}^{13}C \,HSQC-TOCSY$

¹J: C-H (125 -145Hz);

TOCSY mixing time 80ms

2D ¹H, ¹³C HSQC 2D ¹H, ¹³C HSQC-NOESY

¹J: C-H (125 -145Hz);

NOESY mixing time 300ms

2D ¹H, ¹³C HSQC-TOCSY 2D ¹H, ¹³C HSQC-NOESY

Manfred Wagner

2D ¹**H**, ¹⁵**N HMBC**

Manfred Wagner

2D ¹⁹F,¹³C HSQC

2D X-Y correlation (e.g. ¹³C-³¹P) of charged and dendritic structures

³¹**P NMR**

2D-³¹P,¹³C NMR HSQC 2D correlation with ¹H decoupling

NOESY - Nuclear Overhauser Enhanced SpectroscopY 2D H,H-NOESY Structure calculation EPI-X4 1.8 kDa 16 aa LVRYTKKVPQVSTPTL

Manfred Wagner

- In NaP/Citric acid buffer
- pH 3 pH 7,4
- 298 K

Manfred Wagner

EPI-X4, an HSA fragment and CXCR4 antagonist

2D NMR distance calculation (time consuming, at least one week):

- > T₁-relaxation time measurement
- ➤ Minimum 3 (mostly 5) 2D-NOESY with different mixing time,
- > Finding of the linear increasing intensity range with increasing mixing time
- 2D volume integrations, using a well known reference distance (defined NOESY volume integration value),
- ➤ Calculation

3D structure of peptide sequences with NOESY NMR

¹H,¹H NOESY 2D Correlation together with 3D structure calculations generated from the NOESY cross peaks

700 MHz Magnet BBI Proben (1H/X/2H) with z-Gradient

"Molecular Structure and Pronounced Conformational Flexibility of Doxorubicin in Free and Conjugated State within a Drug-Peptide Compound", <u>Tsoneva, Y</u>., <u>Jonker, H. R. A.</u>, <u>Wagner, M</u>., <u>Tadjer, A.</u>, <u>Lelle, M.</u>, <u>Peneva, K.</u>, <u>Ivanova, A</u>.; JOURNAL OF PHYSICAL CHEMISTRY B, Vol.: 119, Issue: 7, 3001-3013, DOI: 10.1021/jp509320q, FEB 19 2015

Protein NMR

Investigating Structure, Dynamics and Interactions with NMR

PhD work from Dr. Gönül Kizilsavas

Mostly done in E.coli strains, but also possible in insect cells, especially recommended for PTM

¹H, ¹³C and ¹⁵N Backbone and Side Chain Signal Assignment

Several 2D and 3D NMR measurements:

¹H, ¹³C and ¹⁵N Backbone and Side Chain Signal Assignment

^{6.} Get new NH group in CA/CO pair in HN(CO)CA and HNCO

¹H, ¹³C and ¹⁵N Backbone and Side Chain Signal Assignment

Example: ¹H, ¹⁵N signal assignment of v-Myc (102 amino acids) depicted on a ¹H, ¹⁵N-HSQC

Calculation of the **3D** structure needs long time (months) and the full assignment of a new protein sometimes longer depending on the size.

PhD work from Dr. Gönül Kizilsavas

When searching for analytical methods, don't be limited by your imagination!!!

Asking others that are not experts in your field is really helpful!!

Sometimes the "negative" result has a reason!!

Knowing "why it doesn't work" is sometimes the beginning of a new idea!!

Be curious!! Always.

Thanks for your attention

