

Winter Semester 2013/2014 **Tuesday, 8:15-9:45 am** Institute of Molecular Biology 2nd Floor Seminar Room Ackermannweg 4 Johannes Gutenberg University Campus

IMB Introduction to epigenetics

Introduction to epigenetics

- 1. Introduction
- 2. Phylogeny of DNA methylation
- 3. Nutrigenomics
- 4. Transgenerational *effects* Imprinting and erasure
- 5. Transgenerational inheritance

New articles in the field of

GENETICS

FRONTIERS IN GENETICS Section "Epigenomics and Epigenetics"

Epigenome-Wide Analyses Identify Two Novel Associations With Recurrent Stroke in the Vitamin Intervention for Stroke Prevention Clinical Trial

Nicole M. Davis Armstrong, Wei-Min Chen, Michael S. Brewer, Stephen R. Williams, Michèle M. Sale, Bradford B. Worrall, and Keith L. Keene

Identification of Hyper-Methylated Tumor Suppressor Genes-Based Diagnostic Panel for Esophageal Squamous Cell Carcinoma (ESCC) in a Chinese Han Population

Chenji Wang, Weilin Pu, Dunmei Zhao, Yinghui Zhou, Ting Lu, Sidi Chen, Zhenglei He, Xulong Feng, Ying Wang, Caihua Li, Shilin Li, Li Jin, Shicheng Guo, Jiucun Wang, and Minghua Wang

The Lysine Demethylase dKDM2 Is Non-essential for Viability, but Regulates Circadian Rhythms in Drosophila

Yani Zheng, Yongbo Xue, Xingjie Ren, Mengmeng Liu, Xiao Li, Yu Jia, Ye Niu, Jian-Quan Ni, Yong Zhang, and Jun-Yuan Ji

FRONTIERS IN GENETICS

Section "Livestock Genomics"

Comparative Transcriptome Profiling of mRNA and IncRNA Related to Tail Adipose Tissues of Sheep

Lin Ma, Meng Zhang, Yunyun Jin, Sarantsetseg Erdenee, Linyong Hu, Hong Chen, Yong Cai, and Xianyong Lan

Genomic Prediction of Complex Phenotypes Using Genic Similarity Based Relatedness Matrix

Ning Gao, Jinyan Teng, Shaopan Ye, Xiaolong Yuan, Shuwen Huang, Hao Zhang, Xiquan Zhang, Jiaqi Li, and

Thu, 13 September 2018

FRONTIERS IN GENETICS (Continued) Section "Bioinformatics and Computational Biology"

Bioinformatics Analysis Identifies p53 as a Candidate Prognostic Biomarker for Neuropathic Pain

Yibo Gao, Na Sun, Lieju Wang, Ying Wu, Longfei Ma, Juncong Hong, Jinxuan Ren, Bin Zhu, Lina Yu, and Min Yan

DECtp: Calling Differential Gene Expression Between Cancer and Normal Samples by Integrating Tumor Purity Information

Weiwei Zhang, Haixia Long, Binsheng He, and Jialiang Yang

Identification and Analysis of Blood Gene Expression Signature for Osteoarthritis With Advanced Feature Selection Methods

Jing Li, Chun-Na Lan, Ying Kong, Song-Shan Feng, and Tao Huang

FRONTIERS IN GENETICS

Section "Behavioral and Psychiatric Genetics"

Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice

Deborah A. Finn, Joel G. Hashimoto, Debra K. Cozzoli, Melinda L. Helms, Michelle A. Nipper, Moriah N. Kaufman, Kristine M. Wiren, and Marina Guizzetti

Genetics research areas Frontiers in Genetics 2018

"Applied Genetic Epidemiology" "Behavioral and Psychiatric Genetics" "Bioinformatics and Computational Biology" "Cancer Genetics"

"Epigenomics and Epigenetics"

"Evolutionary and Genomic Microbiology" "Evolutionary and Population Genetics" "Genetic Disorders" "Genetics of Aging" "Genomic Assay Technology" "Livestock Genomics" "Nutrigenomics" "RNA" "Statistical Genetics and Methodology" "Stem Cell Research" "Toxicogenomics"

epigenetics: definitions

sensu strictu: environmentally induced transgenerational phenotypic change without change of the DNA sequence (but with changes of epigenetic marks)

and many others

	Epigenetics definition	Focus of definition	Interpretation
1	egulation of gene expression	Mechanistic view of the epigenome	 Uses the literal etymology of 'above' or 'beyond' genetics
2	Stable changes in gene function without changes in DNA sequence	Gene function	 No particular focus on transgenerational transfer Narrows definition of epigenetics to consider modification of chromatin No particular focus on transgenerational transfer
3	Non-genetic causes of a phenotype	Phenotype	 Focuses on linkage of mechanism to outcome (phenotype) Transgenerational transfer is part of a larger suite
4	Study of heritable changes in gene function that occur without a change in the DNA sequence	Transgenerational transfer of gene function	 of outcomes, including developmental plasticity Explicit focus on transgenerational transfer (inheritance) of gene function Focuses on mechanism with lesser focus on phenotypic outcome or evolutionary implications
5	Study of <u>heritable phenotype</u> without a change in the DNA sequence	Transgenerational transfer of phenotype	 Explicit focus on transgenerational transfer (inheritance) Focuses on phenotypic outcome and evolutionary implications, with minor focus on mechanism
6	Study of processes that give rise to developmental plasticity and canalization	Persistent phenotype as a result of events that occur during development	 Distinction among 'epigenetics', 'epigenetic inheritance' and 'cellular epigenetic inheritance' Focuses on cellular phenotypic outcome and evolutionary implications, with major focus on mechanism Focuses on transgenerational transfer <i>via</i> gametic
7	Alteration of gene expression by modification of chromatin	Strict inheritance of epigenetic marks such as imprinted genes	 Focuses on the overlap between transgenerational non-genomic transgenerational inheritance and epigenetic inheritance Distinction between indirect and direct epigenetic inheritance

Kovalchuk (2012) Frontiers in Genetics 3, 1 Ho and Burggren (2010) J. Exp. Biol. 213, 3 Transgenerational epigenetic inheritance in animals Epigenetics and transgenerational transfer: a physiological perspective

in short:

'Epigenetics is a useful word if you don't know what's going on – if you do, you use something else'

(quote attributed to Adrian Bird)

Introduction to epigenetics 2018/19

Lecturer	Title	Date	Slides
Gert Pflugfelder	Introduction to epigenetics	16.10.2018	Coming soon
Christof Niehrs	DNA methylation & demethylation	23.10.2018	Coming soon
René Ketting	Small non-coding RNAs	30.10.2018	Coming soon
Natalia Soshnikova	Histone variants	06.11.2018	Coming soon
Mark Helm / Jean- Yves Roignant	Nucleic acid modifications / Mechanisms and functions of RNA modifications	13.11.2018	Coming soon
Eva Wolf	Circadian clocks as gene regulatory systems	20.11.2018	Coming soon
Holger Richly	ncRNAs & the regulation of gene expression	27.11.2018	Coming soon
Anton Khmelinskii*	Prions: Epigenetics, evolution and disease	04.12.2018	Coming soon
Peter Baumann	The epigenetic clock	11.12.2018	Coming soon
Julian König	Genomic views of splicing regulation	18.12.2018	Coming soon
Falk Butter	Quantitative proteomics	08.01.2019	Coming soon
Christoph Cremer	Imaging the cell nucleus: Genome architecture & gene regulation	15.01.2019	Coming soon
Leszek Wojnowski	Epigenetics in the context of health & medicine	22.01.2019	Coming soon
Miguel Andrade / Stefan Legewie **	Data mining approaches to the prediction of gene and protein function / Epigenetics: Quantitative approaches & theoretical models	29.01.2019	Coming soon
David Rosenkranz	Epigenetic Mechanisms in Evolution	05.02.2019	Coming soon

Front. Genet., 26 October 2015 | http://dx.doi.org/10.3389/fgene.2015.00315

ConseMark

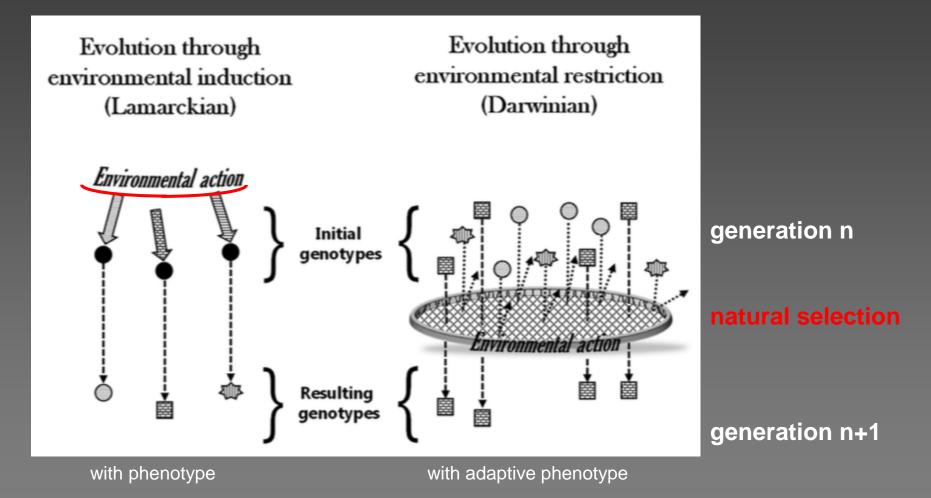
Book review: Epigenetics (second edition, eds. Allis, Caparros, Jenuwein, Reinberg)

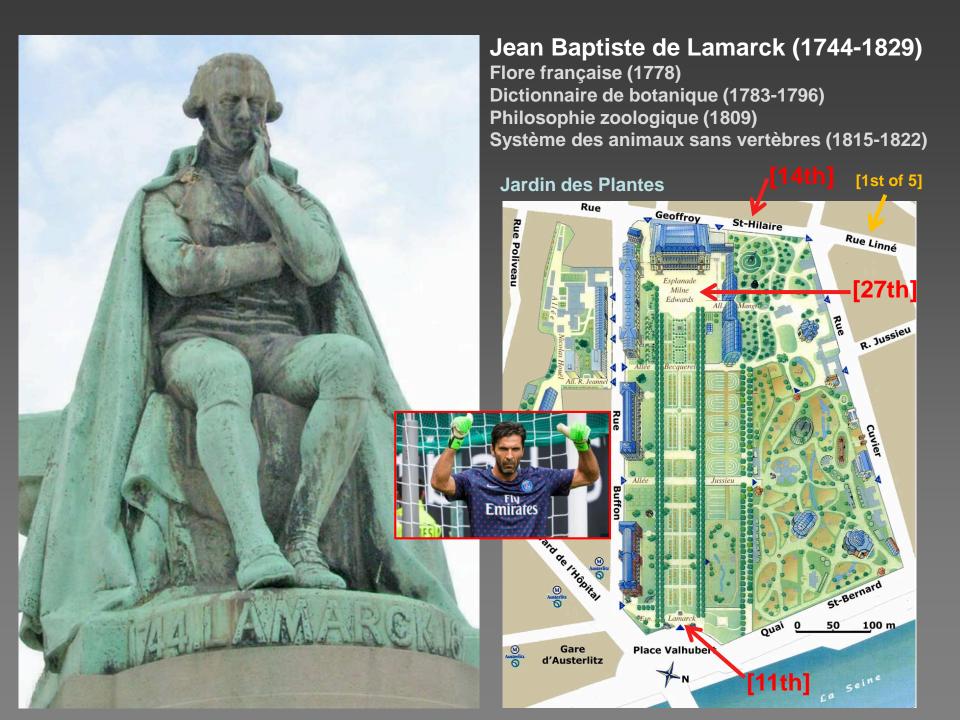
Krassimir Yankulov*

Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada

A book review on

Epigenetics, second edition


Edited by C. David Allis, Marie-Laure Caparros, Thomas Jenuwein, and Danny Reinberg. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2015


Epigenetics is a dynamic and well-established branch of genetics. It deals with heritable traits, which are not transmitted by the sequence of DNA but rather by the state of chromatin. The evolving landscape of epigenetic research has been reviewed in many excellent books and monographs. Amongst these, the second edition of *Epigenetics* by Cold Spring Harbor Laboratory Press (Allis et al., 2015) stands out as one of the most comprehensive references for all major developments and perspectives in the field. Built upon the foundation of the first edition (published in 2007), this new edition continues to deliver a solid basic knowledge of various epigenetic processes in model organisms (including yeasts, ciliates, plants, insects, and mammals), of gene imprinting, of dosage compensation, of DNA methylation, and histone modifications. Twelve new chapters track the recent developments in epigenetic processes in cancer, neuronal development, and mental illness, in responses to the environment and in longrange chromatin interactions. All chapters are written by prestigious researchers and are nicely organized to start with a brisk summary followed by a short overview and heavily and richly illustrated main text. In this respect, the book targets a broad audience and can easily serve as an educational resource in specialized higher level undergraduate and graduate university courses or as a reference for advanced level scientists. Its breadth of topics makes it a compulsory item on the shelf of every lab that is closely or remotely involved in epigenetic studies.

Was man schwarz auf weiß besitzt, kann man getrost nach Hause tragen.

Goethe Faust 1

The Lamarckian flavour of epigenetics

Epigenetic inheritance systems

epigenetic marks DNA methylation

versus

chromatin remodeling histone modification ncRNAs

Self-sustaining loops (involving DNA) (auto-regulation of gene activity via their protein products)

structural inheritance (not involving genomic DNA) (membrane features, mitochondria, cilia, prions, viruses, RNA, proteins etc.)

cultural/socioeconomic inheritance

Ho and Burggren (2010) J. Exp. Biol. 213, 3 Epigenetics and transgenerational transfer: a physiological perspective

Phylogeny of DNA methylation

DNA versus chromatin modification: many species do fine without Dnmt3 or Dnmt1

NA cytosine	methyltransfer	eases in s	selected s	pecies	X = loss of Dnmt1 X = loss of Dnmt3 1 = Dnmt1 chordates Homo sapiens Tetraodon nigroviridis	DNM 1, 3 1, 3	T <u>Contex</u> CG CG
Organism	Dnmt1 'maintenance'	Dnmt2	Dnmt3 'de	CpG methylation	3 = Dnmt3 C = Chromomethylase M2 = Dim-2 G = Gene bodies T = Transposons	1, 3 None None 1, 3	CG None? None CG
Nematode worm			novo'	No	Tribolium castaneum Bombyx mori (silk moth) Drosophila melanogaste	1	None CG None
Flies, mosquitoes		•		No	cnidarians Zygomycetes Nematostella vectensis Phycomyces blakesleean	1, 3 <u>45</u> 1, M2	a state and a
Silk worm	•	•		?	X Dasidiomycetes Postia placenta Laccaria bicolor	1	CG, CN CG, CN
Flour beetle	•	•		2	Coprinopsis cinerea	1	CG, CN
Honey bee		•	•	Yes	X Schizosaccharomyces po		None
Solitary	•••	÷	÷	Yes	ascomycetes X Pezizomycotina pezizomycetes Ascobolus immersus Neurospora crassa	e None 1 M2	None CG, CN CNN
Aphid	••	•	•	Yes	euroteomycetes <u>Uncinocarpus reesii</u>	M2	CNN
Louse		•		2	green algae X Chlorella sp. NC64A X Volvox carteri	1, C 1, C	CG, CH
Daphnia	•		•	2	mosses Physcomitrella patens	1, C 1, 3, C	CG, CHO
Mammals	ě	ě		Yes	Ind plants Iycophytes Genus species = this study seed plants Oryza sativa (rice)	1, 3, C 1, 3, C	CHH
					Otimic species Anabidopsis thaliana 600 1400 1200 1000 800 600 400 200 0 -million years ago	1, 3, C	

Weaver (2012) BioTechniques 06/27/2012

Zemach et al. (2010) Science 328, 916

CpG DNA methylation in Drosophila is not required for epigenetic phenomena

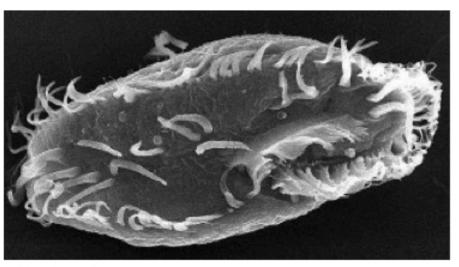
DNMTs have little intrinsic regional specificity, therefore, need to be guided to specific sites by factors with DNA/chromatin recognition ability (possibly by H3K9me which binds HP1 which in turn recruits DNMTs).

No preferential CpG methylation in Drosophila, a Dnmt2-only organisms

EVIDENCE OF CYTOSINE METHYLATION IN DROSOPHILA MELANOGASTER								
Genomic location of mC	Developmental timing of mC	mC/C (%)	Sequence context of mC	Methods used	References			
n.d.	Embryos and larvae	n.d.	n.d.	DB	1 (1983)			
n.d.	Early embryo (0-4 h)	0.35 (2D-TLC), 0.25 (BS)	CpN with preference for CpT	BS, 2D-TLC, HPLC	7			
n.d.	All stages, less abundant in adults	0.08	n.d.	2D-TLC, HPLC	8			
IC: ubiquitous	Embryos	$CE: 0.37 \pm 0.07$	n.d.	CE, IC, SB	9			
Gag ORF of rover	Adults	n.d.	insignificant	AC, BS	10			
IC: ubiquituous	Embryos	n.d.	n.d.	IC	11			
DNARÉP1_DM	Germ line	n.d.	CpN	NSP	12			
Rbf promoter and exon 1, pathogenic	Eye disc	n.d.	CpN, with preference for CpG	BS, MSRE	13			
Retrotransposons	Germ line	n.d.	CpN	NSP	14			
Ftz enhancer, pathogenic	Germ line, embryos, adults	BS: 8.4	CpN	BS, MSRE, SB	15			
Invader 4 LTR	Embryos	BS: up to 57.9	CpN	BS, MSRE	16			
Gene promoters (e.g., Rb, Antp, CG2316) and retrotransposons (HeT-A and Rt1b{})	Soma	BS: 7.0/8.0 (Rb promoter/exon1 in S2 cell expressing transgenic SETDB)	CpN	BS, ChIP, MSRE	17			
Genome-wide	0–3 h embryos	0.11	CpN	BS	18 (2010)			

not detectable n.d., not determined; AC, affinity chromatography; BS, bisulfite sequencing; CE, capillary electrophoresis; ChIP, chromatin immunoprecipitation using mC antibodies; 2D-TLC, 2D thin layer chromatography; DB, dot blot; HPLC, high pressure liquid chromatography; IC, immunocytology; MSRE, methylation-sensitive restriction endonucleases; NSP, nucleotide substitution pattern; SB, slot blot.

Epigenetic Enigmas


fLike

Methylation rare in time

Overturning previous studies, a peculiar protozoan mysteriously uses a DNA-markup system to take out the genetic trash.

By Beth Marie Mole | October 17, 2012

Wikimedia, Unknown Source

🎗 +1 < 3 🛛 📊 Link this 🔂 Stumble 💟 Tweet this

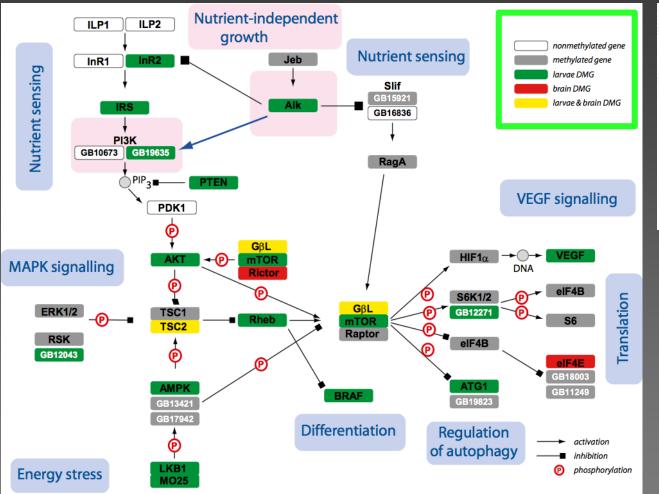
While most organisms use methyl marks on the genome to stake out gene expression, the freshwater protozoan *Oxytricha trifallax* use the tags to kick junk DNA—95 percent of its genome—to the curb, according to a new study in *Genome Biology* published today (October 17). The finding refutes previous studies that concluded the ciliated single-cell critters—which usually carry four nuclei—have methylation-free DNA.

"It's actually surprising that there is methylation, because it wasn't reported to be there—a lot of studies in the 80s and 90s looked for it and didn't

find it," said John R. Bracht, a postdoctoral researcher at Princeton University, and lead author of the study. "And what's kind of fun about this, is that it's the exact same modification that you'll find in humans," he added, "but it may be playing a different role."

Elimination of 95% of micronuclear DNA Fragmentation of genome to create ~ 16,000 nanochromosomes ~ 2000-fold amplification of nanochromosomal DNA (polytene)

JR Bracht, DH Perlman and LF Landweber (2012) *Genome Biology,* doi:10.1186/gb-2012-13-10-r100, JR Bracht (2014) BioEssays 36, 346

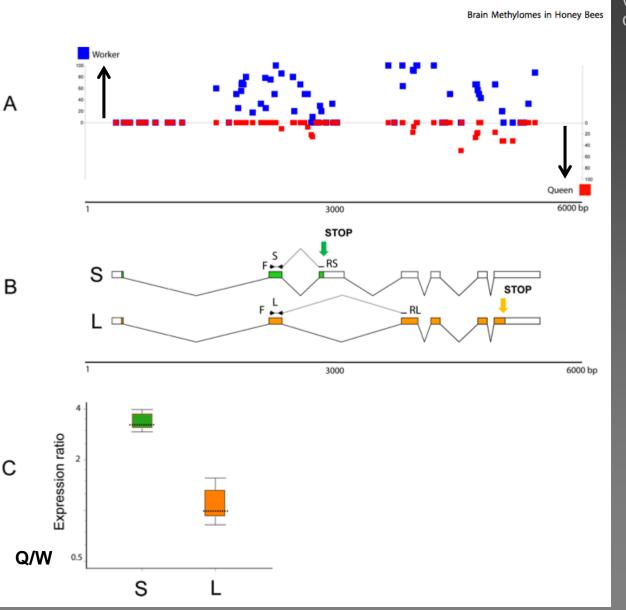

Nutri-epigenomics

What food (royal jelly) can do to a bee by postembryonic epigenetic reprogramming

		Worker	Queen
Mass at emergence		81–151mg	178–292mg
Development egg->adult		16–24 days	14–17 days
Age		15–38 days (summer bees) 140 days (winter bees)	1–3 years normally (up to 8 yrs in some cases)
Facets in compound eye		5,000-6,000	3,500
Placoid olfactory sensillae		2,700	1,600
Pollen basket		Yes	No
Wax glands		Yes	No
Spermatheca		Rudimentary	Large
Ovarioles		2–12	150–180
Sting barbs		Yes honeybee	Rudimentary
Mandibular glands		Large (Apis mellifera)	Very large
Nasonov glands		Yes	No
Dance communication	dancing worker	Yes Ver v	No Chittka and Chittka Epigenetics of Roya

(2010) lty. PLoS Biol 8, 1

Nutri-epigenomics


honeybee (Apis mellifera) worker Dnmt3queen bee bread royal jelly Silencing *Dnmt3* in larvae generates adult bees with queen characteristics,

e. is equivalent to royal jelly.

Kucharski et al. (2008) Science 319, 1827 Foret et al. (2012) PNAS 109, 4968

Food quality/quantity can affect gene expression via DNA methylation: splicing

In honey bee only 7x 10[4] of 10[7] CpGs are methylated, many of them differentially (queen vs worker).

(561 genes with differential on splicing)

gene GB18602

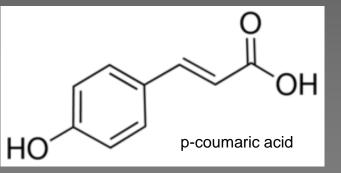
methylation represses the formation of the short splice form

Lyko et al. (2010) PLOS Biol. The honey bee epigenomes: differential methylation of brain DNA in queens and workers

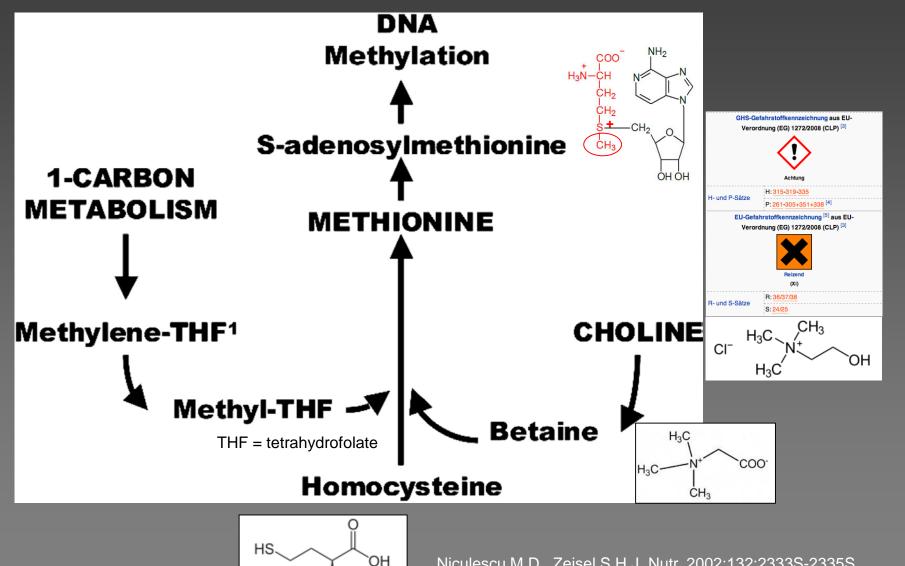
Shayevitch et al. (2018) RNA 24, 1351

Nutri-epigenomics

What food (beebread) can do to a bee by postembryonic gene regulation


ENTOMOLOGY

A dietary phytochemical alters caste-associated gene expression in honey bees


Wenfu Mao,¹ Mary A. Schuler,² May R. Berenbaum¹*

In the eusocial honey bee *Apis mellifera*, with reproductive queens and sterile workers, a female larva's developmental fate depends on its diet; nurse bees feed queen-destined larvae exclusively royal jelly, a glandular secretion, but worker-destined larvae receive royal jelly for 3 days and subsequently jelly to which honey and beebread are added. RNA-Seq analysis demonstrated that *p*-coumaric acid, which is ubiquitous in honey and beebread, differentially regulates genes involved in caste determination. Rearing larvae in vitro on a royal jelly diet to which *p*-coumaric acid has been added produces adults with reduced ovary development. Thus, consuming royal jelly exclusively not only enriches the diet of queen-destined larvae but also may protect them from inhibitory effects of phytochemicals present in the honey and beebread fed to worker-destined larvae.

2015 © The Au exclusive licen the Advancerr under a Creati NonCommerci 10.1126/sciady

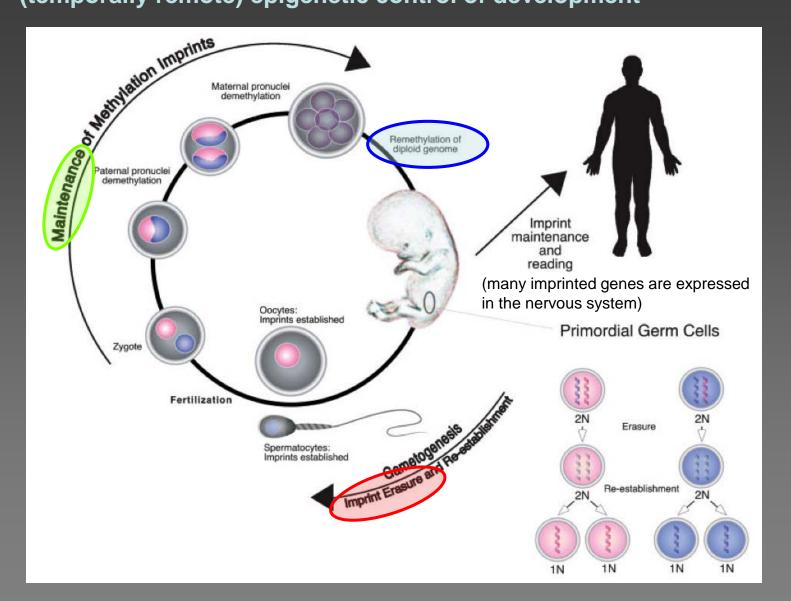
Nutri-epigenomics: nutrition and DNA-methylation

 $\bar{N}H_2$

Niculescu M D , Zeisel S H J. Nutr. 2002;132:2333S-2335S Diet, Methyl Donors and DNA Methylation: Interactions between Dietary Folate, Methionine and Choline

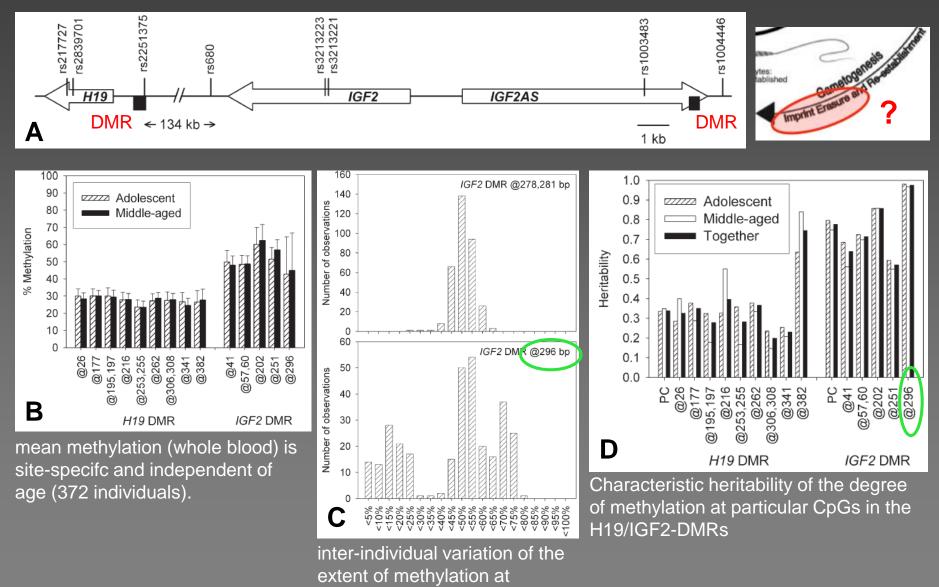
transgenerational effects: imprinting

imprinting: differential gene expression from maternal and paternal alleles. differential expression NOT caused by differences in sequence (genetic) but by differences in DNA and/or histone modification (epigenetic)


up to 200 genes are expected to be imprinted in human (156 genes identified by 2010)

Some imprinted genes are expressed from paternal, others from maternal genome; I. e. paternal and maternal genomes are functionally NOT equivalent (bi-parental requirement). Gynogenetic and androgenetic mouse embryos (generated by pronuclear transplantation) die during embryogenesis. Gynogenetic embryos have under-developed placentae, androgenetic embryos *vice versa*. Imprinted genes not only control fetus and placental development but also maternal care of offspring. parental conflict hypothesis: War of the sexes at genome level.

In the mouse, > 85% of imprinted genes cluster to 11 chromosomal regions. Embryos that are uniparentally disomic for these regions do not thrive. Clusters can be up to 4 Mb. Clusters can contain genes with reciprocal imprints.
Imprinting control region (ICR) can control imprinted expression of several genes in one cluster.
ICRs of different imprint clusters differ in sequence but share a high level of CpG dinucleotides.
Clustering of imprinted genes is conserved between mouse and human (functional significance)
Imprinting is caused by modification of histones and DNA. Either the active or the inactive allele can be methylated.


Imprinting is a transgenerational effect but imprints generally are not inherited across meiosis [?!]

Genomic imprinting and erasure through the mammalian life cycle: (temporally remote) epigenetic control of development

Murphy (2003) BioEssays 25, 577. Imprinting evolution and the price of silence

Heritability of the degree of methylation at particular CpGs in the differentially methylated regions (DMRs) of imprinted genes: genotype dependent remethylation **OR** incomplete erasure

particular sites

Hejmans et al. (2007) Hum Mol Genet 16, 547

Transient environmental influences can produce persistent changes in epigenetic marks that can have life-long phenotypic consequences

Hejmans et al (2008): Persistent epigenetic differences associated with prenatial exposure to famine in humans

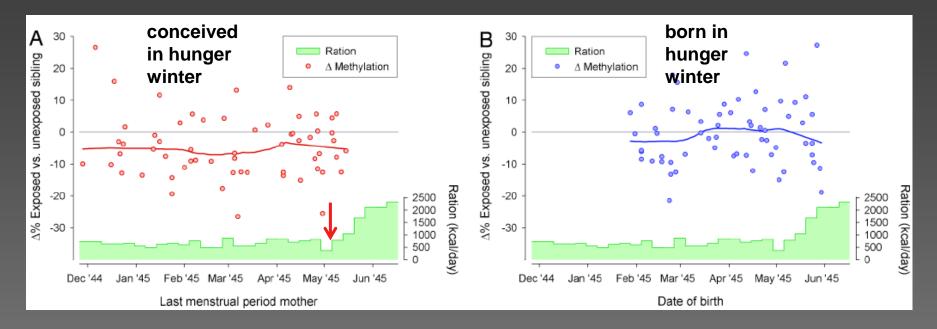
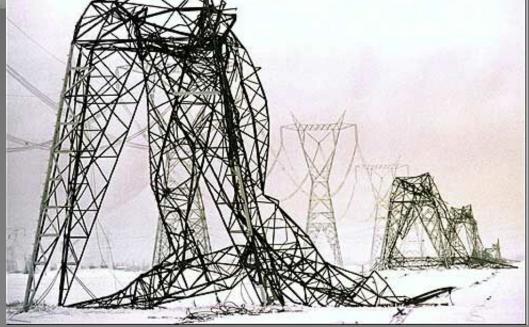
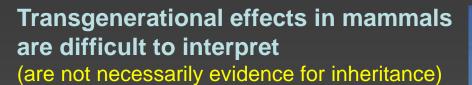


Table 3. Timing of famine exposure during gestation, *IGF2* DMR methylation, and birth weight

	Periconceptional exposure	Late gestational exposure	All controls
n	60	62	122
Males, %	46.7	45.2	45.9
Mean age, years	58.1 (SD, 0.35)	58.8 (SD, 0.4)	57.1 (SD, 5.5)
Birth weight, g	3612 (SD, 648)	3126 (SD, 408)	_
IGF2 DMR methylation			
Average	0.488 (SD, 0.047)	0.514 (SD, 0.045)	0.517 (SD, 0.047)
P _{vs all controls}	$1.5 imes 10^{-5}$.69	
Pinteraction			$4.7 imes10^{-3}$


P values were obtained using a linear mixed model and adjusted for age.

Analysis (after 58 years) of the IGF2 DMR (a maternal, repressive imprint) of males conceived versus born during the Dutch Hunger Winter 1944/45 (in comparison with their same-sex siblings born before or after this time).



The Great Icestorm 1998 (Eastern Canada, Northeastern USA)

DNA Methylation Signatures Triggered by Prenatal Maternal Stress Exposure to a Natural Disaster: Project Ice Storm Quebec province, January 6- 9 (1998)

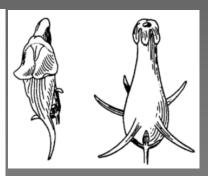
Cao-Lei et al. (2014) PLOS ONE 9, e107653

nutrition of the mother affects:

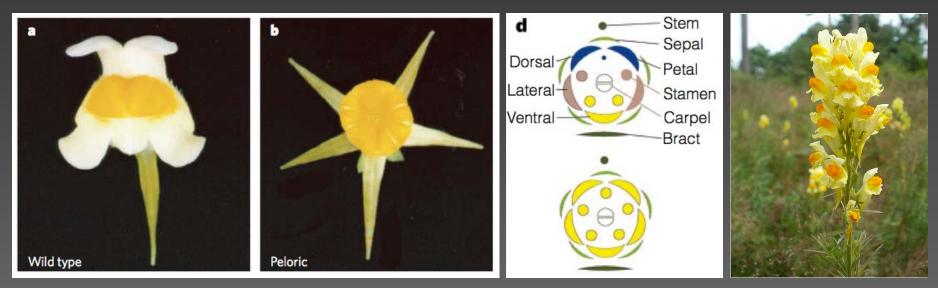
the soma of the mother (1st generation) the soma of the child (2nd generation) the germ line in the developing foetus (3rd generation)

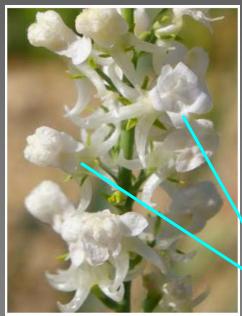
Transgenerational inheritance of epigenomic states in plants (?)

Cornelis van Haarlem (1562-1638), Two Followers of Cadmus Devoured by a Dragon (1588), oil on canvas on oak, 148.5 x 195.5 cm The National Gallery (Presented by the Duke of Northumberland, 1838), London. Photo © The National Gallery, London.


Cadmus and the Dragon, Laconian black-figure kylix C6th B.C., <u>Musée du Louvre</u>

From greek mythology (< 6th c BC) to Linné (1744): The making of the monster Pelor


Peter Paul Rubens (workshop of), Cadmus Sowing Dragon's Teeth (1610-90), oil on panel, 27.7 x 43.3 cm, Rijksmuseum Amsterdam, Amsterdam. Wikimedia Commons.



Goethes Morphologische Schriften Jena 1820

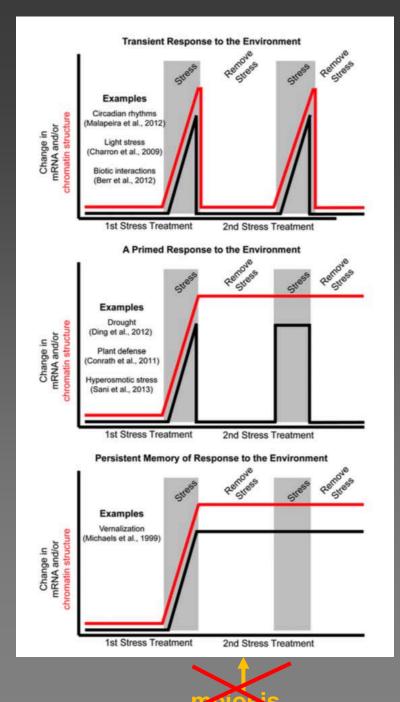
https://eclecticlight.co/2017/03/15/changing-stories-ovids-metamorphoses-on-canvas-10-cadmus-and-the-dragons-teeth/

Transgenerational inheritance of epigenomic states in plants (?)

Peloric Linaria purpurea

bilateral symmetry (zygomorphic) vs. radial symmetry (actinomorphic) in *Linaria vulgaris* (Echtes Leinkraut, common toadflax)

Radial phenotype is caused by (semi-stable) heritable methylation (and inactivation) of the *Linaria cycloidea* gene (*Lcyc*) which is a dorsal determinant.


Peloria is common in zygomorphic flowering

plants

same genome [?], different epigenome

Cubas et al. (1999) Nature 401, 157 An epigenetic mutation responsible for natural variation in floral symmetry

Gustafsson (1979) Theor. Appl. Genet. 54, 241

No good evidence for transgenerational epigenetic inheritance of selected traits in plants

Eichten et al., (2014) Plant Physiology 165, 933 Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation

Verhoeven et al., (2016) Molecular Ecology 25, 1631 Epigenetics in ecology and evolution: what we know and what we need to know

advanced reading: https://en.wikipedia.org/wiki/Trofim_Lysenko **Transgenerational effect/inheritance without material transfer: Effects of tenderness.** Prenatal maternal and early developmental influences on adult behavior mediated by "epigenetic" regulation of *glucocorticoid receptor* expression

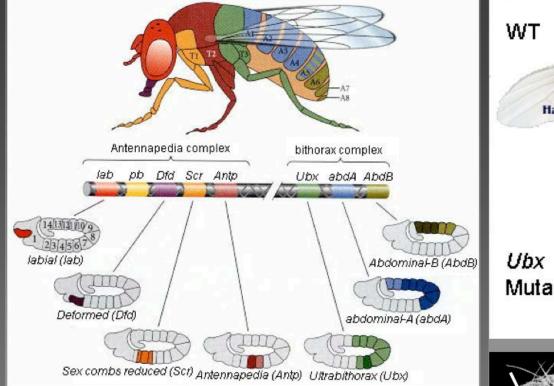
Further examples of non-mendelian inheritance in mammals

Rassoulzadegan, M., V. Grandjean, P. Gounon, S. Vincent, I. Gillot, and F. Cuzin, *RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse.* Nature, 2006. 441(7092): p. 469-74.

Franklin, T.B., H. Russig, I.C. Weiss, J. Graff, N. Linder, A. Michalon, S. Vizi, and I.M. Mansuy, *Epigenetic transmission of the impact of early stress across generations.* Biol Psychiatry, 2010. 68(5): p. 408-15.

Zeybel, M., et al., *Multigenerational epigenetic adaptation of the hepatic wound-healing response.* Nat Med, 2012. 18(9): p. 1369-77.

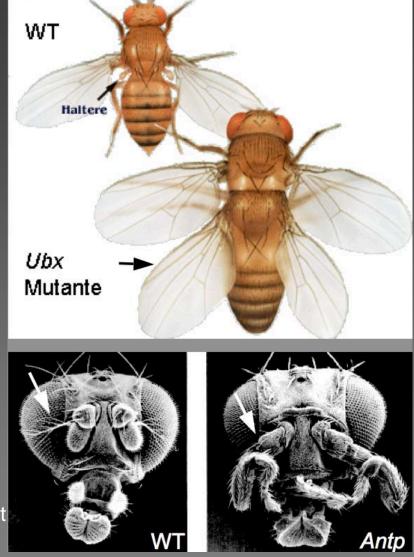
Dias, B.G. and K.J. Ressler, *Parental olfactory experience influences behavior and neural structure in subsequent generations.* Nat Neurosci, 2014. 17(1): p. 89-96.


Transgenerational epigenetic inheritance: More questions than answers

Lucia Daxinger and Emma Whitelaw¹

Epigenetics Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Queensland 4006, Australia

Epigenetics became an established discipline in the 1970s and 1980s as a result of work carried out by geneticists using model organisms such as Drosophila (Henikoff 1990). Originally, this research area aimed to understand those instances in which stable changes in genome function could not be explained by changes in DNA sequence. This definition suited Waddington's original purpose, i.e., to explain how a multicellular organism could develop from one genome (Waddington 1942). More recently, with increasing knowledge of the underlying molecular mechanisms, the field has taken on a more biochemical flavor (Bird 2007; Kouzarides 2007).


Homeotic genes and homeotic mutations

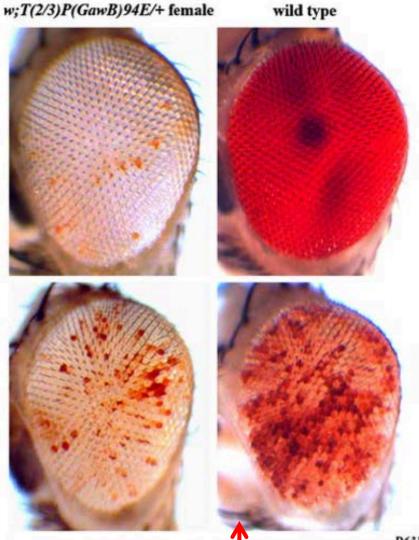
The spatially restricted expression of homeotic genes is established in early embryogenesis under the control of maternal and segmentation genes.

How is Hox gene expression maintained throughout development, when the early patterning genes are no longer expressed?

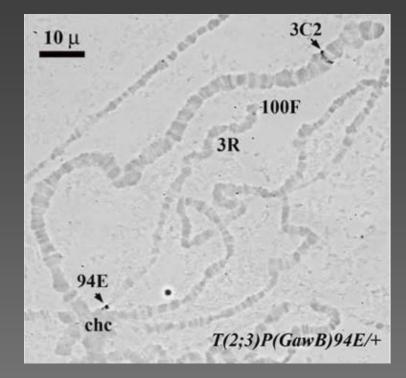
By the action of *Polycomb*-group (*PcG*, repressive) and *trithorax*-group (*trxG*, activating) genes

HOMOEOSIS IN DROSOPHILA: A NEW ENHANCER OF POLYCOMB AND RELATED HOMOEOTIC MUTATIONS

TAKASHI SATO,* MICHAEL A. RUSSELL[†] and R. E. DENELL*

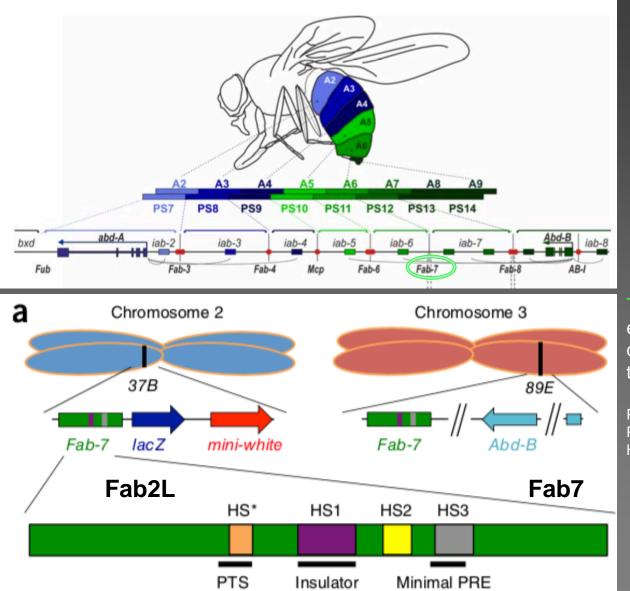

Many epigenetically relevant genes were first identified as mutations in *Drosophila* with a homeotic phenotype

Locus	Location	Variant	Adult phenotype"	Ŕ
Antennapedia	3-47.7	Antp ^{73b}	Antenna to leg (het)	1
		Antp ^{Ns} Antp ^{Erwis} Antp ^{Scs}	Antenna to leg (het and homo) 2nd and 3rd to 1st leg (het) 2nd and 3rd to 1st leg (het)	
Contrabithorax	3-58.8	Cbx ¹	Wing to haltere (het and homo)	
engrailed	2-62.0	en ¹	Posterior to anterior compartment in wing and other structures (homo)	1
		en LA7	Lethal (homo)	
		Df(2R)en 28	Lethal (homo)	
				1
		Df(2R)en 30	Lethal (homo)	1.1
		$Df(2R)en^{\Lambda}$	Lethal (homo)	
		$Df(2R)en^B$	Lethal (homo)	_
		Df(2R)en SFX31	Lethal (homo)	8
		T(2;3)en SFX37	Lethal (homo)	2
		T(2;3)Es	Lethal (homo)	6
extra sex comb	2-54.9	esc1	2nd and 3rd to 1st leg (homo)	9
lethal(4)29	4-(within	1(4)29	2nd and 3rd to 1st leg and other	-
	Df(4)G		effects (homo)	ō
Polycomb	3-48	Pe ¹ , Pe ³ , Pe ^{RI}	2nd and 3rd to 1st leg and other effects (het)	Anterior / Dorsal
		PcTS	2nd and 3rd to 1st leg (homo)	
		$Df(3L)Pe^{MK}$	2nd and 3rd to 1st leg (het)	<
Polycomblike	2-84	Pc1', Pcl ^{w6}	2nd and 3rd to 1st leg and other effects (het)	
		Df(2R)11B	2nd and 3rd to 1st leg and other effects (het)	3
		Df(2R)Pel ^{ws}	2nd and 3rd to 1st leg and other effects (het)	
		In(2R)Pcl ^{W4}	2nd and 3rd to 1st leg and other effects (het)	
Sex comb re-	3-47.7	In(3R)Sre ^{Mw}	1st to 2nd leg, and 2nd and 3rd	
duced		-	to 1st leg (het)	


Sato et al. (1983) Genetics 105, 357 Ng and Kopp (2008) Behav. Genet. 38, 195

Position effect variegation (PEV): stochastic inactivation of euchromatic genes translocated close to heterochromatin

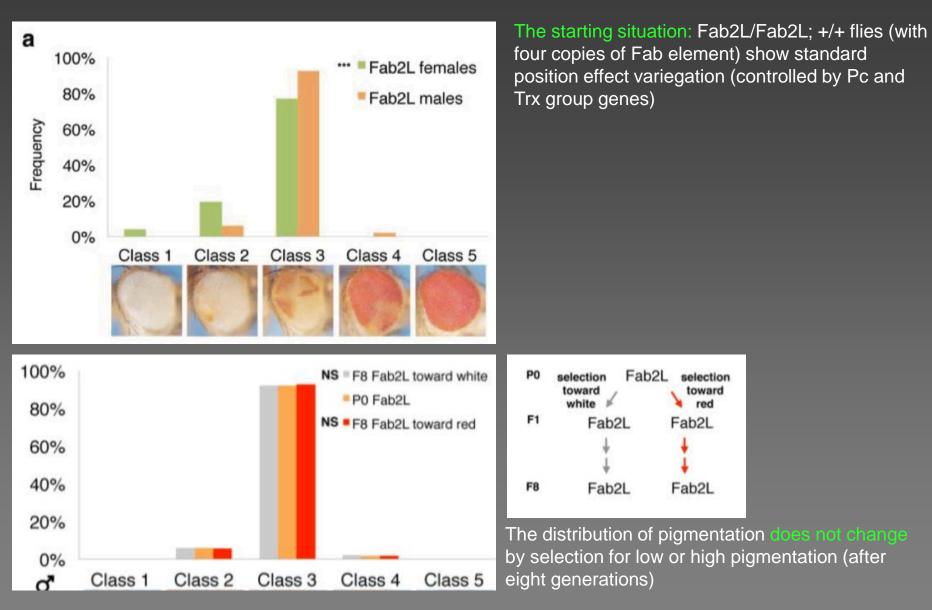
w;T(2/3)P(GawB)94E/+ male w;T(2/3)P(GawB)94E/jumu

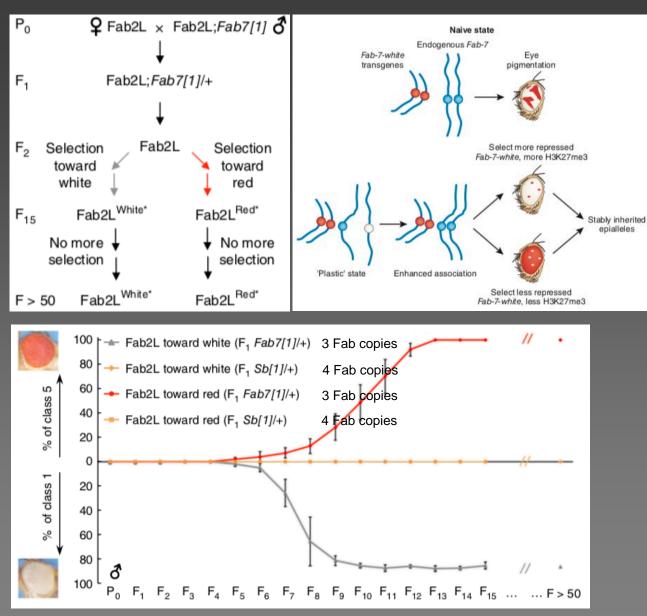

reduced variegation compared to the isogenic male control (left). *jumu* as haplo-suppressor

P(GawB) is a white+ marked transposable element translocated close to the chromocenter in this line.

PEV is sensitive to modifiers. Here: influence of *jumeaux* (*jumu*), a haplo-suppressor/triplo-enhancer of PEV

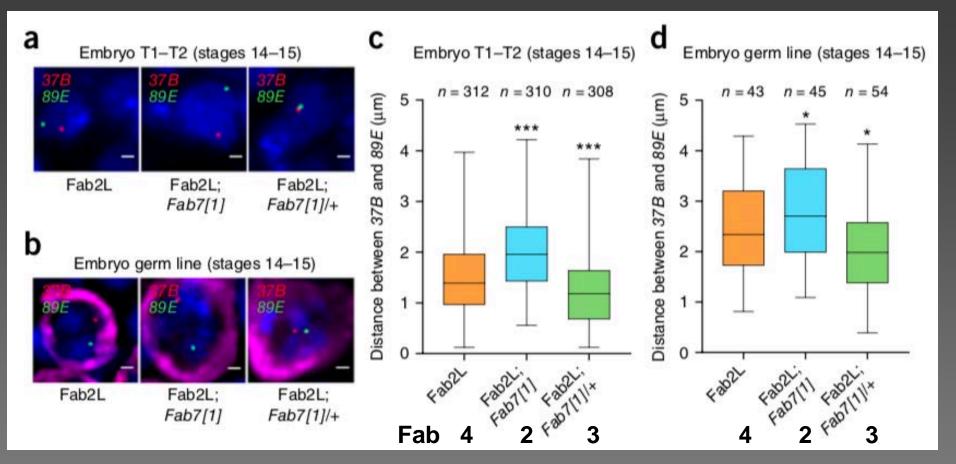
Hofmann et al. (2009) Chromosome Res 17, 347

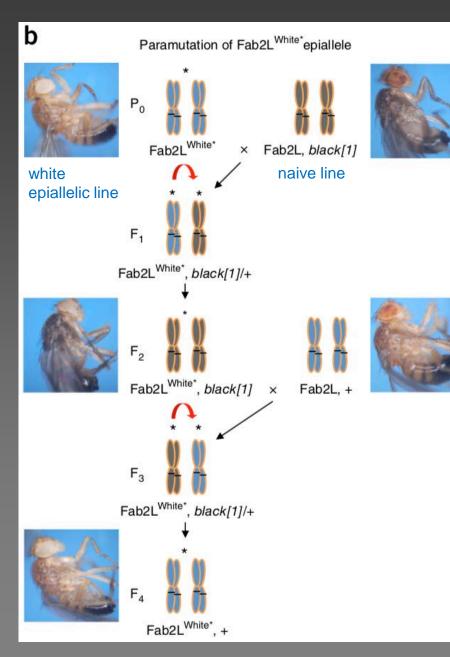

Fab-7: a regulatory element from the AbB region of the *Bithorax* gene complex (Bx-C)


The genetic make-up:

endogenous Fab-7 element on chrs. 3 and Fab-7 containing transgene on chrs. 2

PTS = promoter targeting sequence PRE = Polycomb response element HS = nuclease sensitive chromatin regions


Ciabrelli et al., (2017) Nat. Genet. 49, 876 Kyrchanova et al. (2016) PLOS Genet.



Introduction of transient heterozygosity of the endogenous Fab-7 copy allows the selection of high and low pigmentation epilines, which are identical at the DNA sequence level

Ciabrelli et al., (2017) Nat. Genet. 49, 876 Pirrotta (2017) Nat. Genet. 49, 821

Establishment of epialleles is associated with increased long-range interaction between the chromosomal regions (FISH = fluorescent in situ hybridization)

The epiallele chromatin state is contagious: it can induce paramutation of "normal" alleles

The originally naive [*black*] chromosome are transformed to the white epiallelic state

The [*black*] white epialleles have gained transforming power

Ciabrelli et al., (2017) Nat. Genet. 49, 876

Transvection: one allele influences the expression of the other allele, if paired

Vol. LXXXVIII, No. 841 The Americ

The American Naturalist

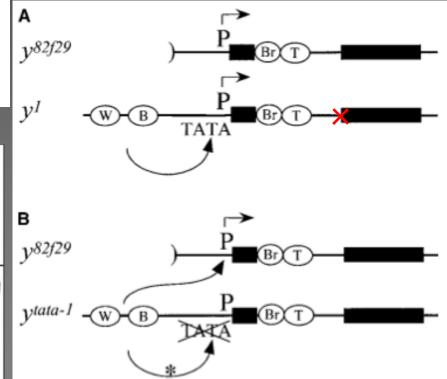
July-August, 1954

re-tata-1

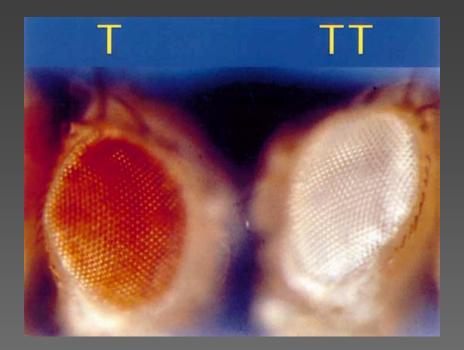
THE THEORY AND APPLICATION OF A NEW METHOD OF DETECTING CHROMOSOMAL REARRANGEMENTS IN DROSOPHILA MELANOGASTER¹

E. B. LEWIS

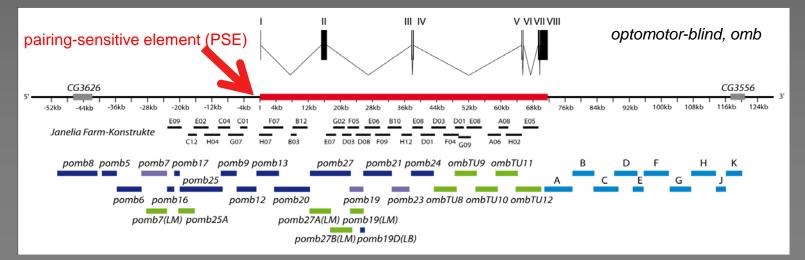
Kerckhoff Laboratories of Biology, California Institute of Technology, Pasadena


A new method of detecting chromosomal rearrangements in *Drosophila* melanogaster has been applied to the problem of measuring the biological effects of ionizing radiations from nuclear detonations. The method, itself, is an outgrowth of studies of the bithorax pseudoallelic genes near the middle of the right arm of the third chromosome (Lewis, 1951). It will be called the "bithorax" method. Results of applying it to the detection of X-ray induced rearrangements will be considered first.

E


Pairing can be disrupted by introducing chromosomal rearrangements

Ed Lewis, Nobel laureate 1995

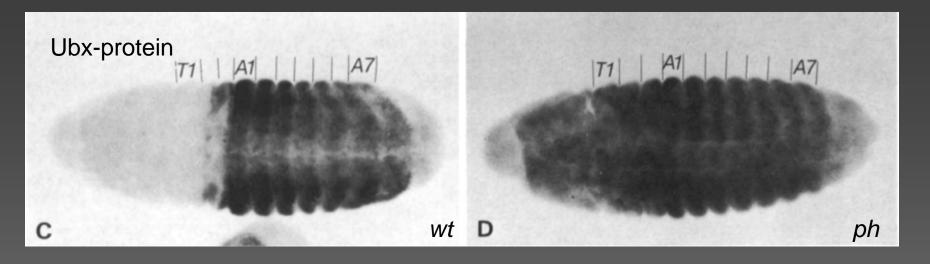


A special case of transvection: Pairing-sensitive silencing (PSS)

T = single copy of transgene construct including marker gene *white* [heterozygous]

TT = two copies of transgene construct including marker gene *white* [homozygous]

Biochemical composition of PcG and trxG complexes

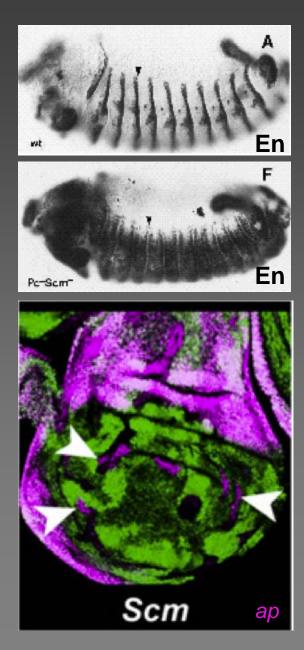

	Droso	phila melanogaster	Human		Drosop	ohila melanogaster	Human
PcG complexes				trxG complexes			
PhoRC	dSfm	bt Scm-related gene containing four mbt domair		SWI/SNF	Brm		BRM
	Pho	Pleiohomeotic	?		Osa		BAF250
PRC2	E(z)	Enhancer of zeste	EZH2		Moira		BAF170
	Esc	Extra sex combs	EED		Snr1		BAF47
	Su(z)1	2 Suppressor of zeste	SUZ12	NURF	Iswi		SNF2L
	N55		RpAp48		N38		?
			RpAp46		N301		BPTF
PRC1	dRing		RING1A		N55		RpAp46 RpAp48
	Pc	Polycomb	HPC1-3	TAC1	Trx ^a	Trithorax	
	Ph	Polyhomeotic	HPH1-3		dCBP		
	Psc P	Posterior sex combs	os BMI1				
	Scm	Sex comb on midleg	SCMH1-2		Sbf1		
	TBP-associated factors			Ash1	Ash1	absent, small, or hor	neotic discs 1
					dCBP		
				MLL1-3			MLL1-3 ^a
							WDR5
							ASH2L
							RbBP5
							CFP1

Technique: Site-specific recombination for the generation of somatic clones



Janody et al. (2004) Genetics 166, 187

Loss of PcG gene activity causes ectopic expression of homeotic genes



Components of the PcG complex are continuously required to maintain repression

in red: ectopic Abd-B expression in clones induced during larval development in the second thoracic segment (wing disc)

Dura and Ingham (1988) Development 103, 733 Beuchle et al. (2001) Development 128, 993 PcG proteins also prevent the inappropriate expression of non-homeotic developmental genes in both embryonic and imaginal tissues

engrailed	apterous	pannier	teashirt	Distalless	even skipped	1
en	ар	pnr	tsh	DII	eve	con regi
AP	U V V V V V V V V V V V V V V V V V V V	wt	N H wt	w	wt	
dSfmbt	Scm	Psc-Su(z)2	Scm	Scm	Psc-Su(z)2	G
ph	Scm BXC	ph	Scm BXC	Scm BXC	ph	P

wing imaginal discs

Moazed and O[´]Farrell (1992) Development 116, 805 Oktaba et al. (2008) Developmental Cell 15, 877