Design and Analysis of NGS Experiments

Nastasja Kreim & Anke Busch

Bioinformatics Core Facility
Institute of Molecular Biology, Mainz

June 14th, 2021

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control

Experimental Design

B Main^Z

Why experimental design?

- to enable unbiased comparison between subjects, conditions, treatment groups
- to account for random variation
- to establish a relationship between cause and effect
- to disentangle biological variability from technical variability
- to enable the generalisation of findings

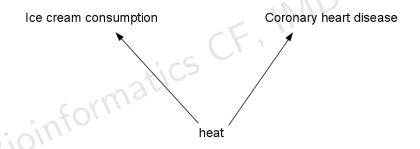
Hypothesis-driven research

- Is drug A better than drug B?
- Is there a genetic interaction between gene X and gene Y?
- Are transfected cells behaving differently than control cells?

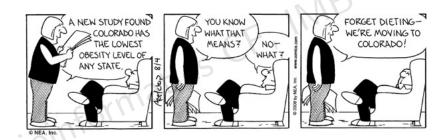
Correlation does not mean Causation

Ice cream consumption — Coronary heart disease

Association does not mean Causation



Correlation does not mean Causation



Variability

Modes of Variability

- biological variability between subjects /samples
- variability between conditions /groups
- technical variability (e.g. sample extraction, library preparation)
- ⇒ we want to determine the variability between groups

Basic rules of experimental design

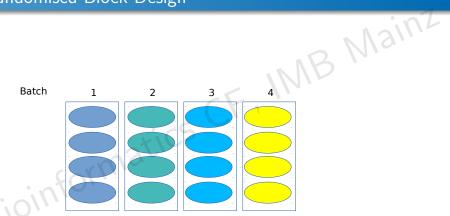
- Blocking for known confounding factors
- Randomisation for unknown confounding factors
- Replication to estimate the variability within a group/condition

Blocking

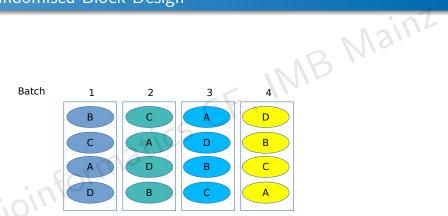
Creation of homogeneous sample sets (for known confounding factors) with a varying factor of interest.

This helps to reduce the variablity between units and increases the meaning of differences between conditions.

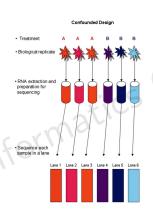
Randomised Block Design



Randomised Block Design

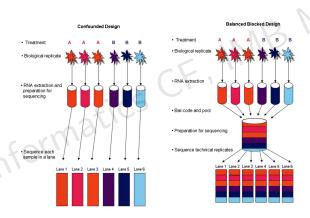


Example: flowcell design for testing differential expression



Auer, Paul L., and R. W. Doerge. "Statistical design and analysis of RNA sequencing data." Genetics 185.2 lolecular Biology (2010): 405-416.

Example: flowcell design for testing differential expression



Example: Cages

CAGE 1 A_1

B₁ C, D_1 Е

CAGE 2

CAGE EFFECT
$$\frac{1}{4} \times \left[\left(A_1 - A_2 \right) + \left(B_1 - B_2 \right) + \left(C_1 - C_2 \right) + \left(D_1 - D_2 \right) \right]$$

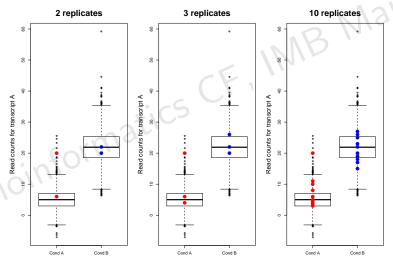
Replication

- to estimate the effect size
- to estimate how precise the effect size estimates are

Replication

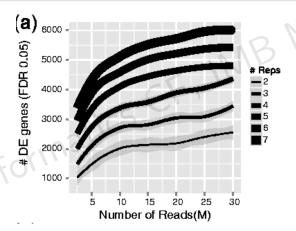
- to estimate the effect size
- to estimate how precise the effect size estimates are
- \Rightarrow to generalise findings

Replication



Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control

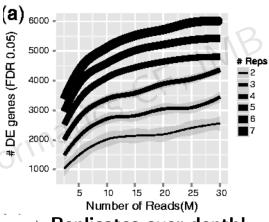
Replication



Liu, Yuwen, Jie Zhou, and Kevin P. White. "RNA-seq differential expression studies: more sequence or more account follows replication?." Bioinformatics 30.3 (2014): 301-304.

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control

Replication



⇒ Replicates over depth!

VSIUZ

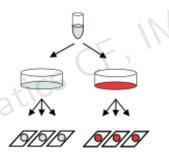
Replicates

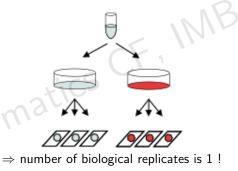
Technical Replicates

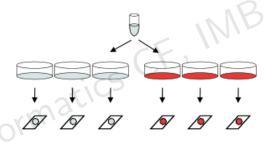
Technical replicates are replicates which have the same biological sample as origin and are processed and measured multiple times.

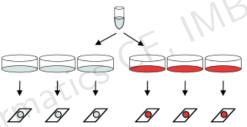
Biological Replicates

- in vivo: samples from different individuals
- in vitro: are there biological replicates?

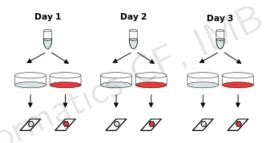


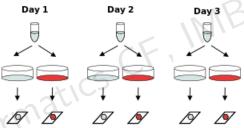




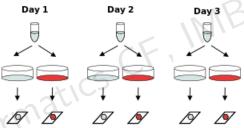


 \Rightarrow a little bit better. More variance than before through split up higher in the hierarchy.





Not ideal either maybe the best solution depending on the circumstances.



Not ideal either maybe the best solution depending on the circumstances. \Rightarrow ideal would be to have cell cultures from different individuals of the same cell type.

Control groups

- confirm validity of the experiment
- reference an experimental manipulation is compared to
- positive (to test if the experiment worked) and negative controls (to ensure we do not measure background) should be included
- control groups should be as similar as possible to your experimental groups

Summary I

- Define your hypothesis and formulate your expectations
- Use an appropriate control
- Replicate
- Block for known confounding factors
- Randomise for unknown confounding factors

After the experiment...

Data analysis

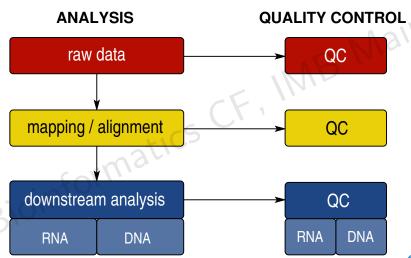
Reminder: RNA-seq and ChIP-seq

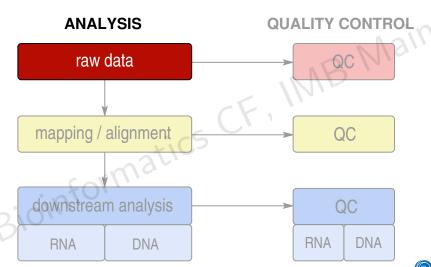
RNA-seq

- sequence expressed (m)RNA
- Goal: find differences in expression / splicing

ChIP-seq

- sequence DNA bound to DNA-binding proteins
- Goal: find binding sites of DNA-binding protein





Short reads

```
@HWI-ST558:257:C4AJHACXX:1:1101:2005:2735 1:N:0:ATCACG
TAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTG
OCCFFFDFHHHHHHTT.LIGT.LI.LIH.LITGTTHG.ITTG.LI.LIEGT.ITGHT.IT
@HWI-ST558:257:C4AJHACXX:1:1101:2458:2678 1:N:0:ATCACG
AGGTAAACAGACCATTGGATGGGAGATAGCAAGAACAATAGACTCCCTCAG
: @?4ADDDFFDBDGFEBGF<<; A@F8<A4?FGEBBFFG<BB?@FG@D>?FB
@HWT-ST558:257:C4A.JHACXX:1:1101:3208:2718 1:N:0:ATCACG
AGGAGGAGGAAGGTGATATCACTGCACAATTTTTCATCTGTTATGATCAAT
@CCFFFDFDDHHDAACCBCHHTTGHTTTTTTTTGHEGGFFFHGGEHHGH
@HWI-ST558:257:C4AJHACXX:1:1101:3358:2699 1:N:0:ATCACG
AGTGTGCCATAGAGCATGCTTGCTATTCCTACAACCCATCCTCTTCAAGCC
===DBBDFDHBDFHIGIGIHIIEGEHGHGH@F@FHII;GGGHGGIGGIGII
@HWI-ST558:257:C4AJHACXX:1:1101:3627:2685 1:N:0:ATCACG
TGGACATATTTTGCATATGTTATCAACATTCATTCTCAGCCCCTTAATGCA
```


Short reads

```
@HWI-ST558:257:C4AJHACXX:1:1101:2005:2735 1:N:0:ATCACG
TAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTG
@CCFFFDFHHHHHHTT.J.IGT.J.J.J.H.J.TGTTHG.JTTG.J.J.J.JEGT.JTGHT.JT
@HWI-ST558:257:C4AJHACXX:1:1101:2458:2678 1:N:0:ATCACG
AGGTAAACAGACCATTGGATGGGAGATAGCAAGAACAATAGACTCCCTCAG
: @?4ADDDFFDBDGFEBGF<<; A@F8<A4?FGEBBFFG<BB?@FG@D>?FB
@HWT-ST558:257:C4A.JHACXX:1:1101:3208:2718 1:N:0:ATCACG
AGGAGGAGGAAGGTGATATCACTGCACAATTTTTCATCTGTTATGATCAAT
@CCFFFDFDDHHDAACCBCHHTTGHTTTTTTTTGHEGGFFFHGGEHHGH
@HWI-ST558:257:C4AJHACXX:1:1101:3358:2699 1:N:0:ATCACG
AGTGTGCCATAGAGCATGCTTGCTATTCCTACAACCCATCCTCTTCAAGCC
===DBBDFDHBDFHIGIGIHIIEGEHGHGH@F@FHII;GGGHGGIGGIGII
@HWT-ST558:257:C4A.JHACXX:1:1101:3627:2685 1:N:0:ATCACG
TGGACATATTTTGCATATGTTATCAACATTCATTCTCAGCCCCTTAATGCA
```


Short reads

```
@HWI-ST558:257:C4AJHACXX:1:1101:2005:2735 1:N:0:ATCACG
TAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTG
OCCFFFDFHHHHHHTT.LIGT.LI.LIH.LITGTTHG.ITTG.LI.LIEGT.ITGHT.IT
@HWI-ST558:257:C4AJHACXX:1:1101:2458:2678 1:N:0:ATCACG
AGGTAAACAGACCATTGGATGGGAGATAGCAAGAACAATAGACTCCCTCAG
: 0?4ADDDFFDBDGFEBGF<<; A0F8<A4?FGEBBFFG<BB?0FG0D>?FB
@HWT-ST558:257:C4A.JHACXX:1:1101:3208:2718 1:N:0:ATCACG
AGGAGGAGGAAGGTGATATCACTGCACAATTTTTCATCTGTTATGATCAAT
@CCFFFDFDDHHDAACCBCHHTTGHTTTTTTTTGHEGGFFFHGGEHHGH
@HWI-ST558:257:C4AJHACXX:1:1101:3358:2699 1:N:0:ATCACG
AGTGTGCCATAGAGCATGCTTGCTATTCCTACAACCCATCCTCTTCAAGCC
===DBBDFDHBDFHIGIGIHIIEGEHGHGH@F@FHII;GGGHGGIGGIGII
@HWT-ST558:257:C4A.JHACXX:1:1101:3627:2685 1:N:0:ATCACG
TGGACATATTTTGCATATGTTATCAACATTCATTCTCAGCCCCTTAATGCA
```


Short reads

```
@HWI-ST558:257:C4AJHACXX:1:1101:2005:2735 1:N:0:ATCACG
TAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTG
OCCFFFDFHHHHHHTT.LIGT.LI.LIH.LITGTTHG.ITTG.LI.LIEGT.ITGHT.IT
@HWI-ST558:257:C4AJHACXX:1:1101:2458:2678 1:N:0:ATCACG
AGGTAAACAGACCATTGGATGGGAGATAGCAAGAACAATAGACTCCCTCAG
: @?4ADDDFFDBDGFEBGF<<; A@F8<A4?FGEBBFFG<BB?@FG@D>?FB
@HWT-ST558:257:C4A.JHACXX:1:1101:3208:2718 1:N:0:ATCACG
AGGAGGAGGAAGGTGATATCACTGCACAATTTTTCATCTGTTATGATCAAT
@CCFFEDFDDHHDAACCBCHHTTGHTTTTTTTTTGHHEGGFEFHGGEHHGH
@HWI-ST558:257:C4AJHACXX:1:1101:3358:2699 1:N:0:ATCACG
AGTGTGCCATAGAGCATGCTTGCTATTCCTACAACCCATCCTCTTCAAGCC
===DBBDFDHBDFHIGIGIHIIEGEHGHGH@F@FHII;GGGHGGIGGIGII
@HWT-ST558:257:C4A.JHACXX:1:1101:3627:2685 1:N:0:ATCACG
TGGACATATTTTGCATATGTTATCAACATTCATTCTCAGCCCCTTAATGCA
```


Single read

@HWI-ST558:257:C4AJHACXX:1:1101:2005:2735 1:N:0:ATCACG

TAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTG

+

@CCFFFDFHHHHHHIIJJGIJJJHJJIGIIHGJIIGJJJJEGIJIGHIJI

header sequence (header2) qualities

Single read

```
QHWI-ST558:257:C4AJHACXX:1:1101:2005:27351:N:0:ATCACGheaderTAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTGsequence+(header2)QCCFFFDFHHHHHHIIJJGIJJJJHJJIGIIHGJIIGJJJJJEGIJIGHIJIqualities
```

Quality translation

Single read

```
@HWI-ST558:257:C4AJHACXX:1:1101:2005:27351:N:0:ATCACGheaderTAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTGsequence+(header2)@CCFFFDFHHHHHHHIIJJGIJJJJHJJIGIIHGJIIGJJJJJEGIJIGHIJIqualities
```

Quality translation

Phred qual. score Q

$$Q = -10\log_{10}P$$

or
$$P = 10^{\frac{-Q}{10}}$$

Single read

@HWI-ST558:257:C4AJHACXX:1:1101:2005:2735 1:N:0:ATCACG

TAGCGGAACCAAGTGAGGAACTATGCCAGAGTCTATTACCATCTGTATCTG

4

@CCFFFDFHHHHHHIIJJGIJJJHJJIGIIHGJIIGJJJJEGIJIGHIJI

header sequence (header2) qualities

Quality translation

Phred qual. score Q

$$Q = -10\log_{10}P$$

or
$$P = 10^{\frac{-Q}{10}}$$

	Phred score Q	prob. of incorrect base call P	base call accuracy	
j	10	0.1 = 1 in 10	90%	
	20	0.01 = 1 in 100	99%	
	30	0.001 = 1 in 1000	99.9%	
	40	0.0001 = 1 in 10000	99.99%	
		haan, //: haana	:/: I: /Db	

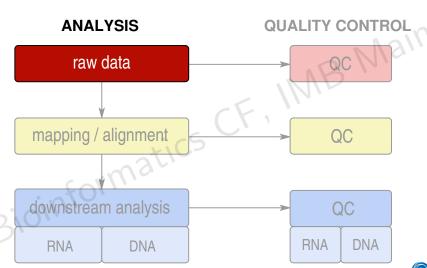
istitute of ar Biology

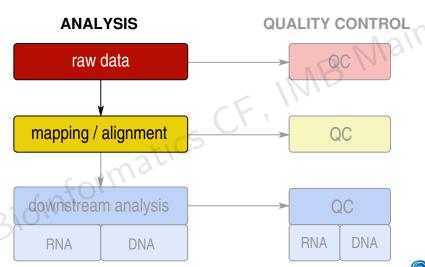
NextSeq Q-score binning

Q-score bins	new Q-score		
2 - 9	6		
10 - 19	15		
20 - 24	22		
25 - 29	27		
30 - 34	33		
35 - 39	37		
> 40	40		

Mainz

			Main			
NextSeq Q-score binning						
Q-score bins	new Q-score	accuracy bins	assigned accuracy			
2 – 9	6	36.90 - 87.41%	74.88%			
10 - 19	15	90.00 - 98.74%	96.84%			
20 - 24	22	99.00 - 99.60%	99.37%			
25 - 29	27	99.68 - 99.87%	99.80%			
30 - 34	33	99.90 - 99.96%	99.95%			
35 - 39	37	99.97 - 99.99%	99.98%			
≥ 40	40	$\geq 99.99\%$	99.99%			





ΔΔΤΤΔΔ

Raw Data (FASTQ File Format Mapping

Read mapping

CTTTCGACCA

. ACTGATCCCATTTCATTCAAAAATCAAAATAAACTCGCCTAAATCACAACCAAACCTAAAACT

CTTTTCGCCA

ATTAAACGACC

AGGCA

TCAGACAAACCCT

TACCAGAAGGCC

CAGACAAACCC AAAATCAGA

GAAACGTTGAAGT

GCATTGAACAGAAAG

ACAGGTATAC

ATTAACAACA

ACCAGGTAAAGA

AAATTACACACA

CATTACACAGAGACAAA

ACCAAAAAATTTA

ACAGTTAGAACACA

ACAGTTAGACACA

ACAGTTATAGCA

ACAGGATTTGTGAGAC

ACAGTAGACACAAC

ACATAGACGGCAACAA

ACACACAT

CAGTAGACACAAC

ACAGACGATTTAACACA

ACAG(Molecular Biology

Nastasia Kreim & Anke Busch – IMB Mainz

Design and Analysis of NGS Experiments

ACAGATAGACA

Read mapping

Alignment of reads to genomic positions

- millions of short reads
- human genome: $\sim 3 * 10^9$ bp
- repetitive / low complexity regions

⇒ complex task, computationally expensive

ACCAGGTAAAGA

CATTACACAGAGACAAA

ACAGATAGACA

SNPs / InDels

sequencing: error-prone

ACAGTTAGAACACA

ACAGTTAGACACA

ACAGTTATAGCA

ACAGGATTTGTGAGAC

ACAGTAGACACAAC

ACATAGACGGCAACAA

ACACACAT

ACAGACGATTTAACACA

ACAG(Molecular

Read mapping

Alignment of reads to genomic positions

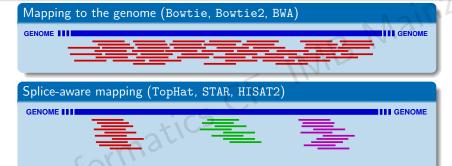
- millions of short reads
- human genome: $\sim 3 * 10^9$ bp
- repetitive / low complexity regions
- sequencing: error-prone
- SNPs / InDels

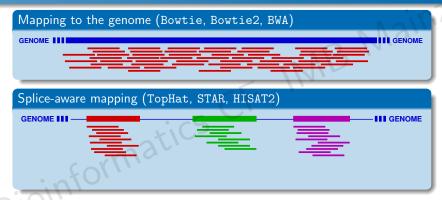
⇒ complex task, computationally expensive

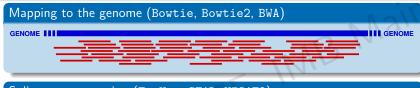
TACCULA A ACA

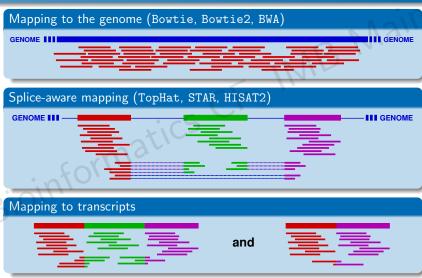
Tools

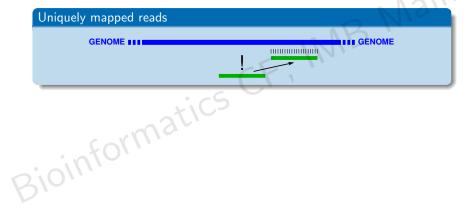
- large number of specialized NGS read mappers
- o non-splice-aware: Bowtie, Bowtie2, BWA, ... (diff. in accuracy, speed, mem.)
- splice-aware: STAR, TopHat, HISAT2, ... (diff. in accuracy, speed, memory)
- mapping parameters can have huge impact on mapping results

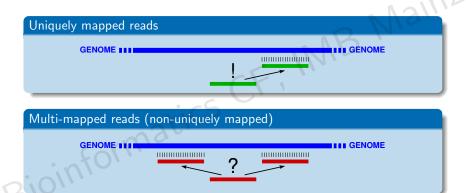


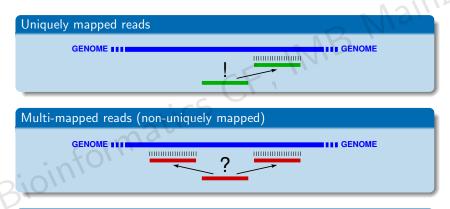






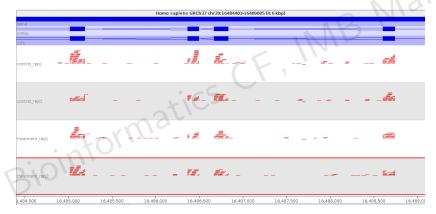


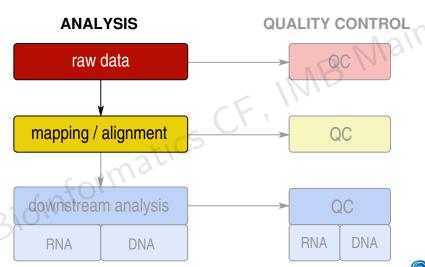




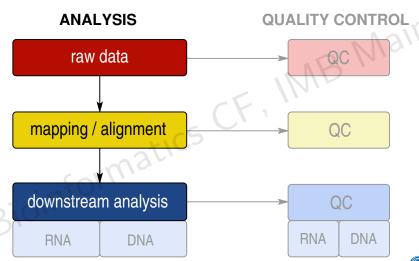
Unmapped reads

Visualization: browser tracks

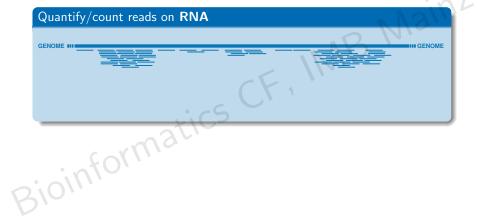


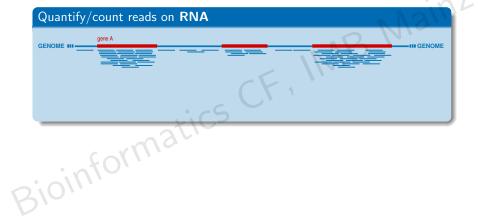


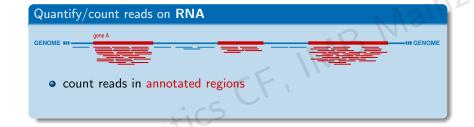
Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control NAseq: Differential Expression of Genes ilPseq: Peak Calling ilPseq: Annotation & Differential Binding

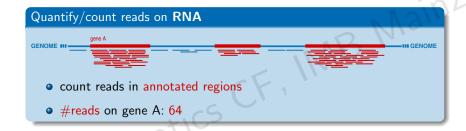


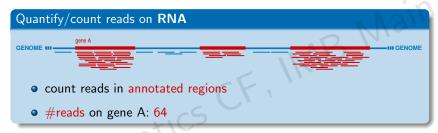
Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control NAseq: Differential Expression of Genes NPseq: Peak Calling NPseq: Annotation & Differential Bindin

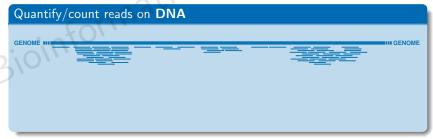


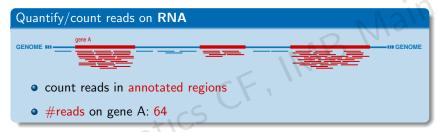


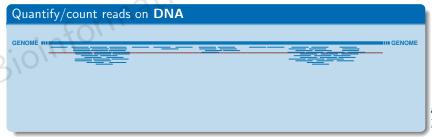


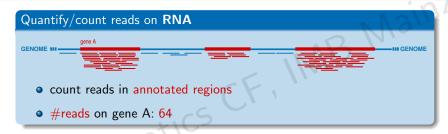


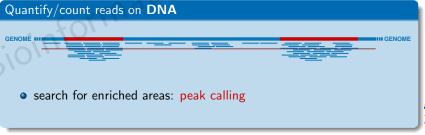


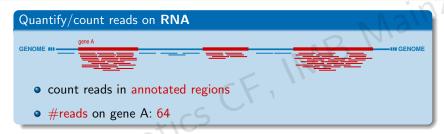


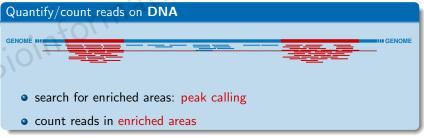




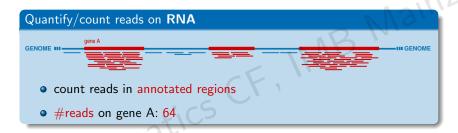








Quantification of reads



GENOME III GENOME

- search for enriched areas: peak calling
- count reads in enriched areas

RNAseq: differential expression analysis

Steps

- RNA quantification
- 2 normalization
- 3 data modeling, distribution estimation
- visualization

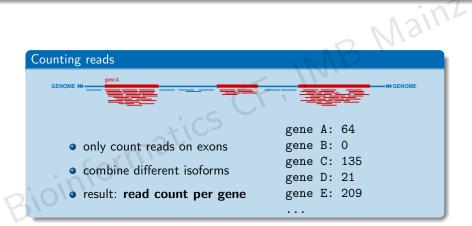
Mainz

RNAseq: Differential Expression of Genes ChIPseq: Peak Calling

hIPseq: Annotation & Differential Binding

Other subsequent analyses

RNA quantification



RNAseq: Differential Expression of Genes ChIPseq: Peak Calling ChIPseq: Apportation & Differential Binding

Normalization - why?

Why normalization? What to normalize for?

the number of counts is related to:

mRNA expression level (proportional)

but also:

- the sequencing depth
- the transcript length

Thus, we need within and between sample normalization.

RNAseg: Differential Expression of Genes

Normalization methods (1/2)

RPKM

(Mortazavi et al., Nat. Methods, 2008)

- Reads Per Kilobase per Million mapped reads
- read counts of gene i are divided by the gene length (kb) and the total $\mathsf{RPKM}_i = \frac{\mathsf{read}\;\mathsf{count}_i}{\frac{\mathsf{gene}\;\mathsf{length}_i}{10^3} * \frac{\mathsf{total}\;\mathsf{read}\;\mathsf{count}}{10^6}}$

$$\mathsf{RPKM}_i = \frac{\mathsf{read}\;\mathsf{count}_i}{\frac{\mathsf{gene}\;\mathsf{length}_i}{10^3} * \frac{\mathsf{total}\;\mathsf{read}\;\mathsf{count}}{10^6}}$$

Other subsequent analyses

Normalization methods (1/2)

RPKM

(Mortazavi et al., Nat. Methods, 2008)

- Reads Per Kilobase per Million mapped reads
- read counts of gene i are divided by the gene length (kb) and the total number of millions of mapped reads of the sample

$$\mathsf{RPKM}_i = \frac{\mathsf{read}\;\mathsf{count}_i}{\frac{\mathsf{gene}\;\mathsf{length}_i}{10^3} * \frac{\mathsf{total}\;\mathsf{read}\;\mathsf{count}}{10^6}}$$

 problem: how to determine correct gene length in case of several isoforms? only some might be expressed

 \rightarrow not useful for diff. expression analysis

RNAseq: Differential Expression of Genes ChIPseq: Peak Calling ChIPseq: Annotation & Differential Bindin

Normalization methods (2/2)

RPM

- Reads Per Million mapped reads
- read counts of gene i are divided by the total number of millions of mapped reads of the sample

$$\mathsf{RPM}_i = \frac{\mathsf{read} \; \mathsf{count}_i}{\frac{\mathsf{total} \; \mathsf{read} \; \mathsf{count}}{10^6}}$$

• only suitable for between sample comparison (no within sample comp.)

ChIPseq: Annotation & Differential Binding

Normalization methods (2/2)

RPM

- Reads Per Million mapped reads
- read counts of gene i are divided by the total number of millions of mapped reads of the sample

$$\mathsf{RPM}_i = \frac{\mathsf{read} \; \mathsf{count}}{\frac{\mathsf{total} \; \mathsf{read} \; \mathsf{count}}{10^6}}$$

only suitable for between sample comparison (no within sample comp.)

TPM

- Transcripts Per Million mapped reads
- normalized RPKM
- all TPMs in a sample sum up to 1,000,000

$$\mathsf{TPM}_i = \frac{\mathsf{RPKM}_i}{\sum_k \mathsf{RPKM}_k} * 10^6$$

QC - Quality Control Uther subsequent analy

Data modeling

Data modeling / distribution estimation

- read counts modeled as following a negative binomial distribution (=poisson-like distribution with variance not only depending on mean)
- for each gene: calculate p-value for differential expression:
 - model read counts within conditions
 - assumption: genes with similar expression have similar variance
 - compare variation within conditions to that between conditions
- correct p-value for multiple testing (FDR)

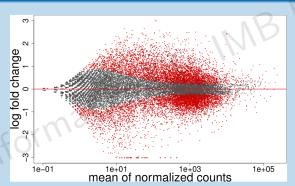
hIPseq: Annotation & Differential Binding

Other subsequent analyses

Tools and plots

Example results from DESeq2 package

(Love et al., Genome Biology, 2014)



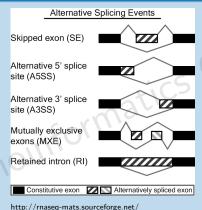
- variance within/between groups especially high for low read counts
- DESeq2: moderation of fold changes

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control RNAseq: Differential Expression of Genes ChIPseq: Peak Calling

ChIPseq: Annotation & Differential Binding Other subsequent analyses

Other downstream analyses

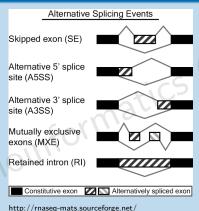
Differential alternative splicing analysis

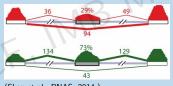


Raw Data Analysis & Mapping **Downstream Analysis** QC - Quality Control RNAsea: Differential Expression of Genes

Other downstream analyses

Differential alternative splicing analysis



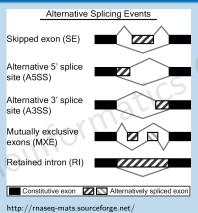


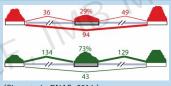
(Shen et al., PNAS, 2014.)

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control RNAseq: Differential Expression of Genes ChIPseq: Peak Calling ChIPseq: Annotation & Differential Bindin

Other downstream analyses

Differential alternative splicing analysis





(Shen et al., PNAS, 2014.)

Tools (e.g.):

- rMATS (Shen et al., PNAS, 2014.)
- MAJIQ (Vaquero-Garcia et al., eLife, 2016.)

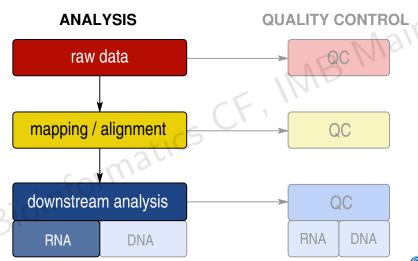
ChIPseq: Annotation & Differential Binding

Other downstream analyses

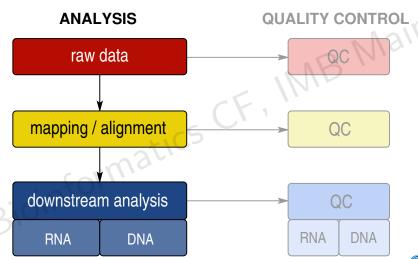
GO term analysis

- assign GO terms to each significantly differentially expressed gene
- look for enriched GO terms in sign. up- or down-regulated genes
- tools (e.g.):
 - clusterProfiler (Yu et al., OMICS, 2012.)
 - DAVID (Huang et al., Nature Protocols, 2009.)

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control RNAseq: Differential Expression of Genes ChIPseq: Peak Calling ChIPseq: Annotation & Differential Binding Others subsequent analyses

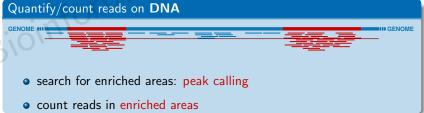


Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control RNAseq: Differential Expression of Genes ChIPseq: Peak Calling ChIPseq: Annotation & Differential Binding Others subsequent analyses



Quantification of reads

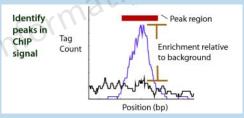
Quantify/count reads on RNA GENOME III GENOME o count reads in annotated regions o #reads on gene A: 64



Peak calling: general idea

Peak calling

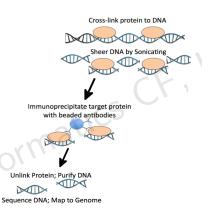
- identification of regions (peaks) that are enriched in the ChIP sample relative to the control with statistical significance
- most common approach: sliding window, count reads per window
- **peak** = enriched relative to control:



Pepke et al., Nat. Methods, 2009

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control RNAseq: Differential Expression of Genes ChIPseq: Peak Calling ChIPseq: Annotation & Differential Binding Other subsequent analyses

ChIP vs. input control

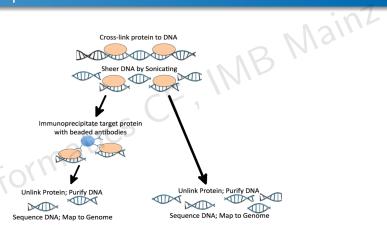


Maiuz

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control

RNAseq: Differential Expression of Genes ChIPseq: Peak Calling ChIPseq: Annotation & Differential Binding Other subsequent analyses

ChIP vs. input control



ChIP

input control

adapted from

http://saltmanquarterly.wordpress.com/2013/06/16/epigenetics-changing-how-we-interpret-genomes/

Recommended controls

Input (most popular)

cross-linked and sonicated (fragmented) DNA, but not IP'd

Recommended controls

Input (most popular)

cross-linked and sonicated (fragmented) DNA, but not IP'd

IgG / mock IP

Immunoglobulin G ($\lg G$) used as a control (unspecific) antibody, which does not recognize DNA or chromatin associated proteins

Recommended controls

Input (most popular)

cross-linked and sonicated (fragmented) DNA, but not IP'd

IgG / mock IP

Immunoglobulin G ($\lg G$) used as a control (unspecific) antibody, which does not recognize DNA or chromatin associated proteins

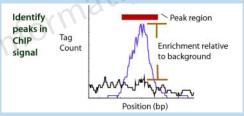
untagged epitope

in case of epitope tagged constructs, perform ChIP on cells lacking epitope tag

Peak calling: general idea

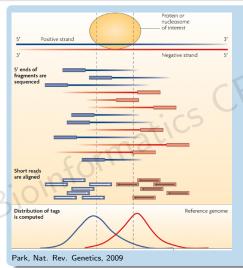
Peak calling

- identification of regions (peaks) that are enriched in the ChIP sample relative to the control with statistical significance
- most common approach: sliding window, count reads per window
- **peak** = enriched relative to control:



Pepke et al., Nat. Methods, 2009

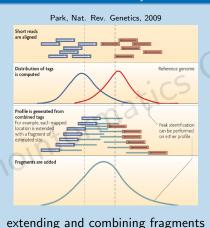
Peak calling: Strand specific profiles at enriched sites



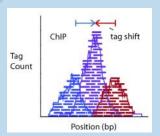
- DNA sequences are sequenced from the 5' end
- alignment to genome results in two peaks (one on each strand)
- peaks are flanking the binding location of the protein of interest

Peak calling: construction of combined signal profiles

Estimation of local density: for both strands and individually



Pepke et al., Nat. Methods, 2009

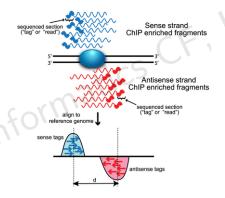


shifting reads towards center

Peak calling: enrichment for TFs and histone modifications

sequence specific binding

(e.g. transcription factors)

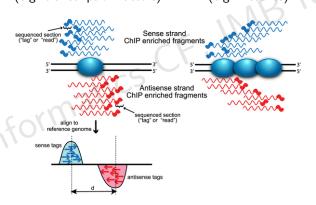


Wilbanks & Facciotti, PLOS ONE, 2010

Peak calling: enrichment for TFs and histone modifications

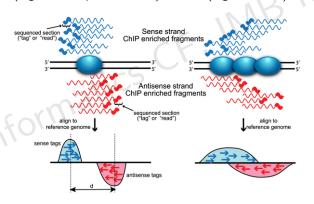
sequence specific binding (e.g. transcription factors)

distributed binding events (e.g. histones)



Peak calling: enrichment for TFs and histone modifications

sequence specific binding distributed binding events
(e.g. transcription factors) (e.g. histones)



Peak calling: tool comparison

Which peak finder should I use?

- dozens of different peak finders published
- some optimized for either TFs or histone marks
- sensitive to parameter settings
- e.g. MACS2 (https://github.com/macs3-project/MACS)

Reviews

TF ChIP-seq:

- Laajala et al., BMC Genomics, 2009
- Wilbanks & Facciotti, PLOS ONE, 2010

histone ChIP-seq:

Micsinai et al., NAR, 2012

General:

- Pepke et al., Nat. Methods, 2009
- Nakato & Shirahige, Brief. Bioinform., 2017

ChIPseq: Annotation & Differential Binding

After peak calling: annotation / functional analysis

PeakAnalyzer (PeakAnnotator)

(Salmon-Divon et al., BMC Bioinformatics, 2010)

For each peak:

- downstream forward gene + distance
- downstream reverse gene + distance
- overlapped genes + overlap start (feat.) + overlap center (feat.) + overlap end (feat.)

ChIPseeker

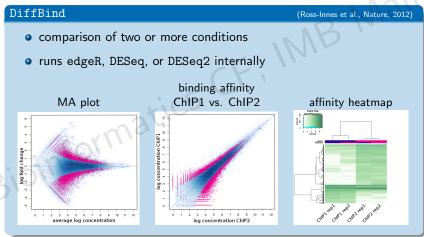
(https://github.com/GuangchuangYu/ChIPseeker)

Peaks overlapping gene features

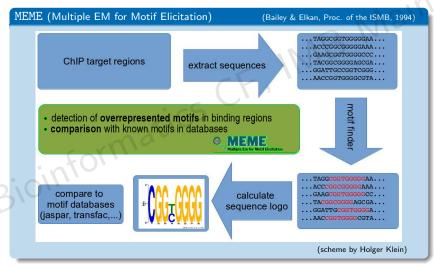


- Promoter (<=1kb) (24.49%)</p>
- Promoter (1-2kb) (7.13%)
- 5' UTR (0.44%) 3' UTR (1.08%)
- 1st Exon (0.4%)
- Other Exon (1.81%)
- 1st Intron (8.17%)
- Other Intron (26.7%)
- Downstream (<=3kb) (1.5%)
- Distal Intergenic (28.28%)

After peak calling: differential binding sites



After peak calling: detection of (novel) binding motifs



IMB Mainz

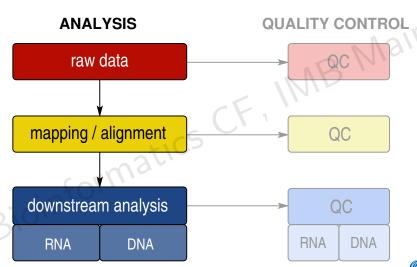
Available pipelines

Selected pipeline collections

- NGSpipe2go: https://gitlab.rlp.net/imbforge/NGSpipe2go (developed at IMB)
- nf-core: https://nf-co.re/

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control

taw data quality control Mapping quality control Application specific quality contro Batch effects



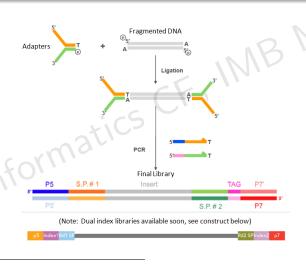
Raw data quality control Mapping quality control Application specific quality control Batch effects

Quality control of next generation sequencing data

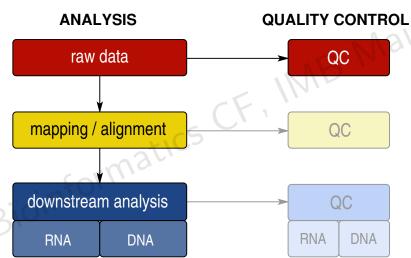
Mainz

Raw data quality control Mapping quality control Application specific quality contro Batch effects

Library Preparation



Raw data quality control Mapping quality control Application specific quality contro Batch effects



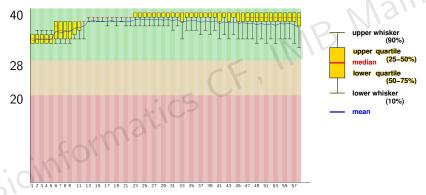
Raw data quality control Mapping quality control Application specific quality contro Batch effects

Raw data quality control

- quality score distribution
- base composition distribution
- read length distribution
- distribution of reads over samples
- overrepresented sequences

Maiur

Distribution of quality values along reads

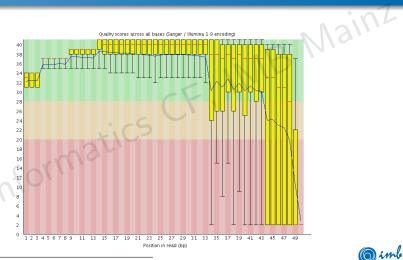


Position in read (bp)

plot produced by fastqc: Andrews, S. "FASTQC. A quality control tool for high throughput sequence data. In the local sequence with the local sequence data. In the local sequence data is a local sequence with the local sequence data. In the local sequence data is a local sequence data is a local sequence data. In the local sequence data is a loc

Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control Raw data quality control Mapping quality control Application specific quality control Batch effects

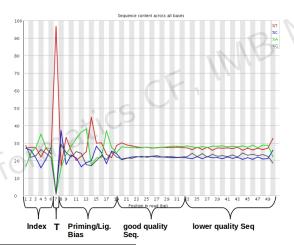
Quality score distribution



plot produced by fastqc: Andrews, S. "FASTQC. A quality control tool for high throughput sequence data." Molecular Biology URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

Valuz

Per base sequence content

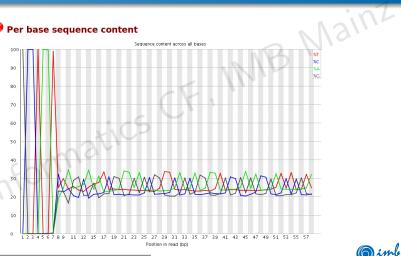


plot produced by fastqc: Andrews, S. "FASTQC. A quality control tool for high throughput sequence data. Molecular Biology URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

Raw data quality control

Per base sequence content

② Per base sequence content



plot produced by fastqc: Andrews, S. "FASTQC. A quality control tool for high throughput sequence data. Molecular fileson URL http://www. bioinformatics. babraham. ac. uk/projects/fastqc (2010).

Raw data quality control

VB Wains

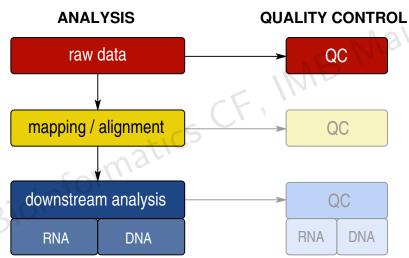
Overrepresented sequences

Overrepresented sequences

	Sequence	Count	Percentage	Possible Source
	GCCTAATTTAGGCAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTA	834146	4.346867007222822	Illumina Paired End PCR Primer 2 (100% over 45bp)
	${\tt GNCTAATTTAGGCAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTA}$	515410	2.685883195738773	Illumina Paired End PCR Primer 2 (100% over 45bp)
	${\tt GCCTAATTTAGGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTAT}$	27500	0.14330685839005114	Illumina Paired End PCR Primer 2 (100% over 46bp)
Bic	inform			

plot produced by fastqc: Andrews, S. "FASTQC. A quality control tool for high throughput sequence data. Molecular URL http://www. bioinformatics. babraham. ac. uk/projects/fastqc (2010).

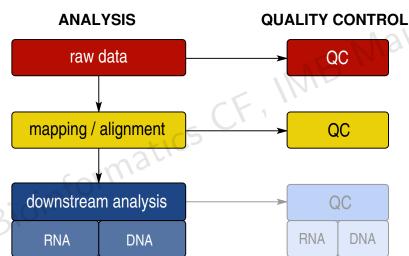
Experimental Design Raw Data Analysis & Mapping Downstream Analysis QC - Quality Control



Mapping quality control

Application specific quality control

Batch effects

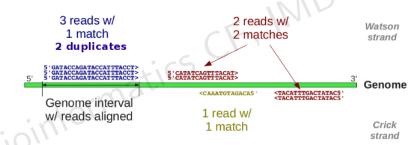


Alignment / Mapping quality control

- # reads mapped
- # reads unmapped
- # reads mapped to known contaminants
- # of uniquely mapped reads
- # duplicates
- expected read distribution pattern

Maiuz

Terminology



Read duplication

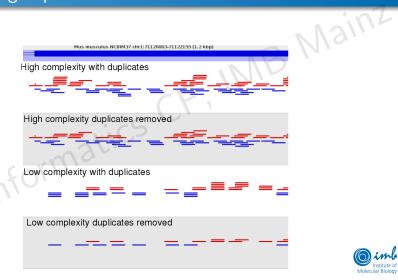
Origins for Read Duplication

- biological
- technical (e.g. PCR amplification, optical duplicates)

B Mainz

Mapping quality control

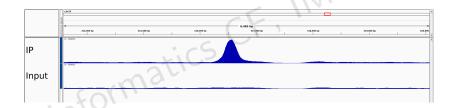
Visualising duplication



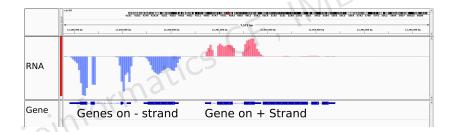
How to handle duplicate reads?

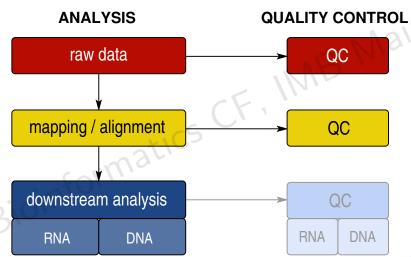
- DNA/ChIP-seq duplicate removal or estimation of biological duplication rate
- RNA-seq no duplication removal before analysis

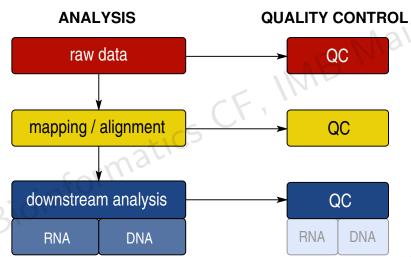
Read distribution pattern: ChIP

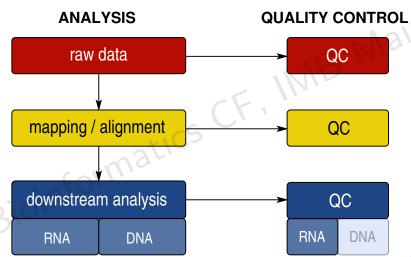


Read distribution pattern: RNA-Seq







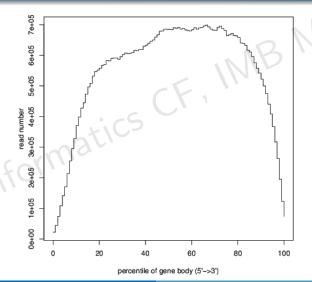


Quality control of RNA-seq

- sequencing depth (unique mapping reads)
- rRNA content
- 5' to 3' distribution of reads (gene body coverage)
- strand specificity
- duplication rate
- distribution of reads over different gene classes

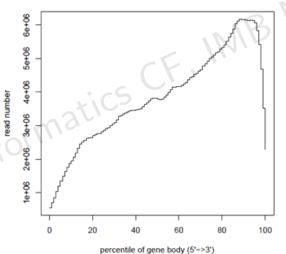
Maiur

RNA-seq: 5' to 3' coverage

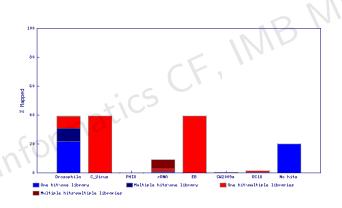


Application specific quality control

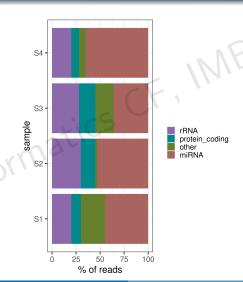
RNA-seq: 5' to 3' coverage



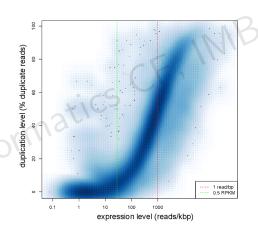
RNA-seq: Contamination Screening



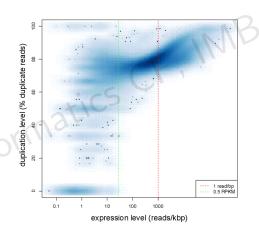
RNA-seq: Counts on Features



RNA-seq: duplication rate

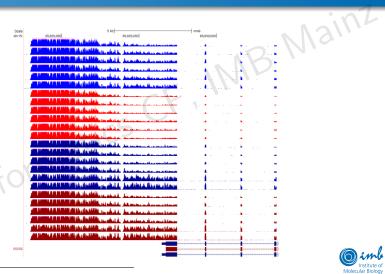


RNA-seq: low complexity library

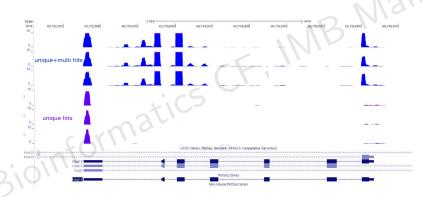


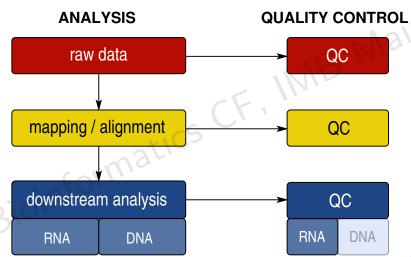
Application specific quality control

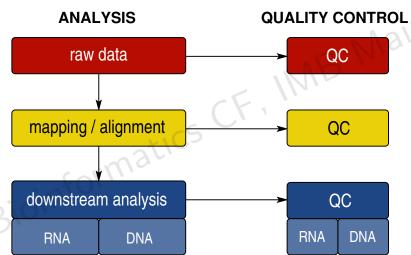
RNA-seq: annotation issues



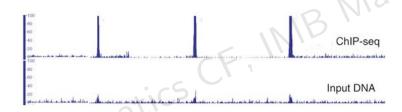
RNA-seq: multi-mapping reads





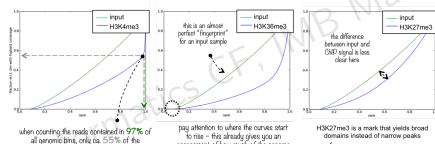


ChIP: input control



- biases by sonication
- large genomic variation (e.g. Aneuploidy, large InDels, CNV)
- artefacts of preparation

ChIP-seq: enrichment quality control IPStrength



maximum number of reads are reached, i.e. 3% of the genome contain a very large fraction of reade!

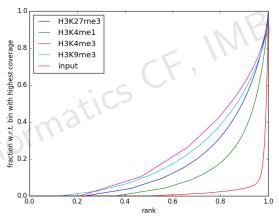
 this indicates very localized, very strong enrichments! (as every biologist hopes for in a ChIP for

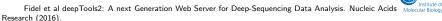
assessment of how much of the genome you have not sequenced at all (i.e. bins containing zero reads - for this example, ca. 10% of the entire genome do not have any read)

it is more difficult to distinguish input and ChIP it does not mean. however, that this particular ChIP experiment failed

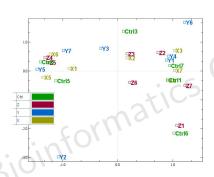
Fidel et al deepTools2: A next Generation Web Server for Deep-Sequencing Data Analysis. Nucleic Acids Molecular Biology Research (2016).

ChIP-seq: enrichment quality control IPStrength

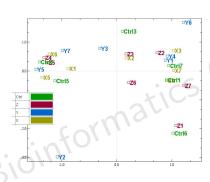


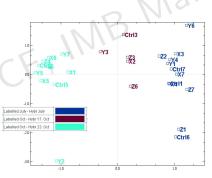


Batch effects

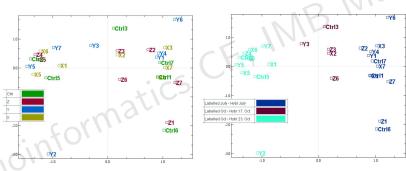


Batch effects



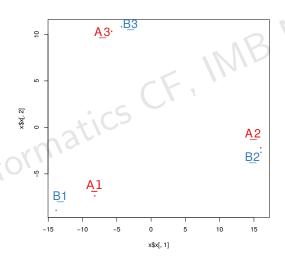


Batch effects



 \Rightarrow if batch processing is unavoidable each sample group should be represented within each batch.

Batch effects



MB Mainz

Guidelines for Experiments

- Encode ChIP-seq, DNA-seq Guidelines
- Encode RNA-seq Standards

Summary II

exploratory data analysis to ensure data quality

Summary II

- exploratory data analysis to ensure data quality
- use known unbiased quality control methods on the different analysis levels

Summary II

- exploratory data analysis to ensure data quality
- use known unbiased quality control methods on the different analysis levels
- investigate the similarities between samples (principal component analysis and clustering)

Summary II

- exploratory data analysis to ensure data quality
- use known unbiased quality control methods on the different analysis levels
- investigate the similarities between samples (principal component analysis and clustering)
- visualise your data

Tools

- Rawdata: FastQC
- Mapper: Bowtie, Bowtie2, BWA, STAR, HISAT2
- Mapping-QC: samtools, Picard tools, qualimap, deepTools
- Duplication: bamUtils, DupRadar
- RNA diff. expression: DESeq2, edgeR
- RNA-seq QC: RNASeqQc, RNAQC
- ChIP-seq QC: deepTools
- Peak calling: MACS2
- Contamination: BLAST, FastQScreen
- Misc Analysis: SeqMonk
- Visualisation: IGV, SeqMonk, UCSC genome browser, Washington epigenome browser

Acknowledgements

- Holger Klein
- Bioinformatics Core Facility:
 - Emil Karaulanov
 - Fridolin Kielisch
 - Martin Oti
 - Giuseppe Petrosino
 - Frank Rühle
 - Sergi Sayols Puig

Acknowledgements

- Holger Klein
- Bioinformatics Core Facility:
 - Emil Karaulanov
 - Fridolin Kielisch
 - Martin Oti
 - Giuseppe Petrosino
 - Frank Rühle
 - Sergi Sayols Puig

Thank you for your attention.

